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Abstract

In the theory of imprecise probability it is often of
interest to find the range of the expectation of some
function over a convex family of probability measures.
Here we show how to find the joint range of the expec-
tations of a finite set of functions when the underlying
space is finite and the family of probability distribu-
tions is defined by finitely many linear constraints.
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1 Introduction

The theory of imprecise probability arises when sub-
jective Bayesians are unable to select a single proba-
bility distribution that reflects their prior knowledge
and beliefs about the unknown state of nature. In
such cases a Bayesian often selects a convex family
of prior distributions to represent their prior knowl-
edge. Cozman (1999) noted that two of the three most
common ways of specifying such families are either
by extreme points or collections of linear constraints.
The first is usually more convenient to deal with while
the second is often a more natural way to incorporate
prior information.

When the family of possible states of nature is finite
the Minkowski-Weyl theorem states that these two
approaches must be equivalent (every convex polyhe-
dron can be represented either as the finite intersec-
tion of closed half spaces or as the convex hull of a
finite set of points and directions). In the case of in-
terest to us, where the polyhedron is bounded, hence
a polytope, the two representations are a finite inter-
section of half spaces (H-representation) or the con-
vex hull of a finite set of vertices (extreme points)
(V-representation).

Recent advances in computational geometry have
produced practicable algorithms for moving back
and forth between the two representations. Fukuda

(2004a) has produced a library (cddlib, version 093d)
of C functions for this. We have written a pack-
age (rcdd) for the R statistical computing environ-
ment (R Development Core Team, 2004), which pro-
vides an interface to some of the functionality of
cddlib, in particular the conversion between H- and
V-representations. This makes cddlib much easier to
use (for anyone familiar with R).

Given a family of distributions, say P, one is often
interested in finding the range of expectations of some
specified real valued function over the family. Here
we consider the problem of finding the joint range of
expectations for a finite set of such functions. Since
expectation is a linear operation, the extreme points
of the range set must be contained in the the images
of the extreme points of P. We show (Theorem 1
below) that the family of posterior distributions given
data is also a convex polytope whose extreme points
are among the images (under the mapping induced
by Bayes’ theorem) of extreme points of the family of
prior distributions. Therefore being able to find the
extreme points of P is a powerful tool.

When the possible states of nature are finite and the
family of possible distributions is defined by linear
constraints, Dickey (2003) has developed an inter-
active computing environment which finds the min-
imum and maximum of the expectation of a speci-
fied function over the family. This can be helpful to
a Bayesian who must sequentially incorporate prior
information in a coherent manner. Lazar and Mee-
den (2003) argued that in such settings considering
the joint range of possible expectations for a finite
set of functions can be more informative than sepa-
rately considering ranges of different functions. Here
we revisit this problem and present more convenient
methods for finding the solution.

In Section 2 we formally state our problem and show
that in a statistical setting being able to solve the
problem for prior expectations yields an easy solu-
tion for the problem with posterior expectations after



the data have been observed. In Section 3 we show
how to use our R library to find solutions when there
are finitely many states of nature. In Section 4 we
show how our approach can be used to find approxi-
mate solutions when the states of nature belong to a
bounded interval of real numbers. In particular, solu-
tions based on a finite subset of values belonging to an
interval provide inner bounds for the actual solution
for the interval.

2 The Finite-Dimensional Problem

Consider the case where the there are only a finite
number of states of nature: the parameter space Θ
is a finite set. A prior distribution p is a probabil-
ity function on Θ, but we identify it with a vector in
R

k where k is the number of points in Θ. This says
no more than finite dimensional vector spaces of the
same dimension are isomorphic and it makes no math-
ematical difference whether we consider p an element
of R

Θ or of R
k. In one case we write p(θ) and in the

other pi, but the distinction is merely notational. In
either case the index (θ or i) takes values in a finite
set with k elements. When thinking probabilistically,
the functional notation p(θ) is more natural. When
thinking computationally, the vector notation pi is
more natural.

The expectation of a scalar function a with respect to
a probability vector p is written

∑

θ∈Θ

a(θ)p(θ) (1)

in functional notation. In vector notation we interpret
a as a vector in R

k and write the expectation

aT p =
k
∑

i=1

aipi (2)

but in either case we have a sum with k terms, so (1)
and (2) are the same thing in different notation.

The expectation of a vector function can be written as
a matrix multiplication Ap, each row of the matrix A
corresponding the transpose of a vector representing
a scalar function. Now the vector notation is much
simpler. If A has elements aij , then the i-th element
of Ap is

(Ap)i =

k
∑

j=1

aijpj

and translating the sum to functional notation we ob-
tain

∑

θ∈Θ

ai(θ)p(θ)

which gives the expectation of the i-th component
ai(θ) of the random vector under discussion. For the
rest of the article, we will pass back and forth between
vector and functional notations in silence.

The requirement that p represent a probability distri-
bution can be written

p ≥ 0 (3a)

uT p = 1 (3b)

where here and throughout the article inequalities
involving vectors are interpreted coordinate-wise, so
(3a) means pi ≥ 0 for all i, and u is the vector with
all coordinates equal to one, so (3b) means

∑

i pi = 1.

Specifying equality and inequality restrictions on a
finite set of scalar functions can be written in matrix
notation as

A1p = b1 (3c)

A2p ≤ b2 (3d)

(The dimensions are such that the equations make
sense: A1 and A2 have column dimension k and the
row dimension of Ai is the same as that of bi, which
is a column vector). The set of p satisfying (3a), (3b),
(3c), and (3d) is a convex polytope in R

k, which we
denote P, and represents an imprecise prior probabil-
ity specification.

Now let ψ be a scalar function on Θ (or the vector
in R

k representing it) and more generally let Ψ be a
matrix, each row of which represents a scalar function
on Θ, so Ψp is the vector of expectations of these
scalar functions. The image of P under Ψ

R(Ψ) = {Ψp | p ∈ P } (4)

is the joint range of these expectations as our prior
probabilities range over P. Since the image of a con-
vex polytope under a linear map is another convex
polytope, and since the extreme points of the image
must be images of extreme points, R(Ψ) is a convex
polytope and its extreme points are among the images
of the extreme points of P.

In the usual statistical setting, after determining P
and observing data according to a family of possible
probability models indexed by θ, statisticians using
the likelihood function update their prior information
via Bayes’ theorem producing the posterior. In our
setup, the likelihood is represented by a diagonal ma-
trix Λx, whose diagonal elements represent the proba-
bility of the observed data given the parameter, f(x|θ)
in conventional notation. Then Bayes rule maps a
prior p to a posterior

Λxp

uT Λxp
(5)



(assuming the denominator is nonzero, which happens
whenever the observed data is not impossible under
the prior p). When we have a family of priors P we
are interested in what the Bayes rule does to each
one of them. Let Bx denote the function (the Bayes

map) that maps a prior p to (5), and let Px denote
the image of P under the Bayes map. So P is our
family of priors and Px the corresponding family of
posteriors (for observed data x).

Now let us return to the family of scalar functions on
the parameter space represented by the matrix Ψ. We
are interested not only in the joint range of prior ex-
pectations (4), but also in the joint range of posterior
expectations

Rx(Ψ) = {Ψp | p ∈ Px } (6)

The diagram below shows the relationships between
these sets

P
Ψ

−−−−→ R(Ψ)

Bx





y

Px
Ψ

−−−−→ Rx(Ψ)

The theorem below gives important properties of
these sets. A convex subset F of a convex set C is
a face of C if whenever x ∈ F and y, z ∈ C with
x = ty + (1 − t)z and 0 < t < 1 we actually have
y, z ∈ F (Rockafellar, 1970, p. 163). For a convex
polytope, every face is the convex hull of the vertices
it contains. A vertex is a face that consists of a single
point.

Theorem 1. Assume that each member in the diag-

onal of Λx is greater than zero, Then the Bayes map

takes convex sets to convex sets and convex polytopes

to convex polytopes, and pre-images of faces of the

image are faces of the domain.

Proof. The “numerator” of the Bayes map p 7→ Λxp
is linear, and maps convex sets to convex sets. Let
Lx denote the image of P under this map. Let posLx

denote the “positive hull” of this set (the set of all
non-negative combinations of points in the set, which
is the polyhedral convex cone generated by it). The
intersection of posLx with the hyperplane

H1 = { p ∈ R
k | uT p = 1 }

(where u is as in (3b)) is the image of P under the
Bayes map, or, to be more precise, the image of those
elements of P that do not map to zero under p 7→ Λxp.
Call this intersection Px.

As the intersection of a convex cone and a hyperplane
is a convex set, so is Px. Since Px is a subset of the
unit simplex, it is bounded. If P is polyhedral, so are
Lx, posLx, and Px, and Px is a convex polytope.

Let Fx be a face of Px and let F be the pre-image
of Fx under the Bayes map. Consider points p ∈ F
and r and s in P such that p = tr + (1 − t)s with
0 < t < 1. Define p∗ = Λxp and similarly for r∗ and
s∗. Then define p̃ = p∗/‖p∗‖ and similarly for r̃ and
s̃, where ‖p‖ =

∑

i|pi| =
∑

i pi. Then

p̃ = t̃r̃ + (1 − t̃)s̃

with t̃ = t‖r∗‖/‖p∗‖. Since Fx is a face, this implies
r̃ and s̃ are elements of Fx, hence that r and s are
elements of F , and that implies F is a face of P.

We were unaware of this fact when Lazar and Mee-
den (2003) was written. In retrospect it seems like
it should be known but we have been unable to find
a reference for it. We note there is nothing finite-
dimensional about our proof except the assertion that
Px is a convex polytope whenever P is. The rest of
the proof remains true when P is a family of probabil-
ity measures on Θ, when the “numerator map” takes
p to p∗ defined by

p∗(B) =

∫

B

f(x|θ)p(dθ)

and when the hyperplane H1 is defined by

H1 =

{

q ∈ M(Θ) :

∫

q(dθ) = 1

}

where M(Θ) is the set of all finite signed measures on
Θ.

3 Using the RCDD Package in R

The key operation in all of this is finding the extreme
points (vertices) of a convex polytope. Let us see how
this is done in R. For this example k = 4. In addition
to the usual constraints given in equations (3a) and
(3b) we will add the equality constraint

∑

i i · pi =
2.5 and the inequality constraint p1 + p2 ≤ 0.4. All
this constraint information will be put into one matrix
called qux below.

> library(rcdd)

> qux <- makeH(-diag(4), rep(0,4),

+ rep(1,4), 1)

> qux <- addHeq(c(1,2,3,4), 2.5, qux)

> qux <- addHin(c(1,1,0,0), 0.4, qux)

> print(qux)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1.0 -1 -1 -1 -1

[2,] 0 0.0 1 0 0 0

[3,] 0 0.0 0 1 0 0

[4,] 0 0.0 0 0 1 0

[5,] 0 0.0 0 0 0 1



[6,] 1 2.5 -1 -2 -3 -4

[7,] 0 0.4 -1 -1 0 0

attr(,"representation")

[1] "H"

(The > and + in the first column are prompts, the
latter being the continuation prompt for a line con-
tinuing an incomplete statement. The symbol <- is
the R assignment operator. The whole block makes a
7 × 6 matrix qux.)

The first command makes the rcdd library of func-
tions available. The next command makes a matrix
that contains the constraints given in in equations
(3a) and (3b). The next command addHeq adds a row
to the matrix specifying the additional equality con-
straint and the command addHin adds another row
specifying the additional inequality constraint.

The first two columns of this matrix are special. In the
first column 1 indicates an equality constraint and 0
an inequality constraint. The second column contains
the elements of the right hand side vectors, the bi in
(3c), and (3d), and the zeros and 1 in (3a) and (3b).
The rest of the columns are −1 times the left hand side
matrices, the Ai in (3c), and (3d), and the negative of
uT in (3b), and the implied basis vectors in (3a). So
row 1 of qux represents (3b), rows 2 through 5 rep-
resent (3a), row 6 represents the equality constraint
∑

i i · pi = 2.5, and row 7 represents the inequality
constraint p1 + p2 ≤ 0.4. Because the first two rows
are special, the column dimension of qux is two more
than the column dimension of the Ai’s which is 4 in
this case.

Having created the H-representation of P, the matrix
qux, we now can find the V-representation using one
command.

> out <- scdd(qux)

> print(out)

$output

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 1 0.25 0.0 0.75 0.0

[2,] 0 1 0.40 0.0 0.30 0.3

[3,] 0 1 0.10 0.3 0.60 0.0

attr(,"representation")

[1] "V"

Again the first two columns of the matrix
(out$output) are special. For a polytope, they are al-
ways 0 in the first column and 1 in the second column
and can be ignored (they are only interesting for un-
bounded polyhedra). Each row of the remaining ma-
trix (columns 3 through 6) is a vertex of P. The first
row says ( 1

4
, 0, 3

4
, 0) is a vertex. Another call to the

scdd function would go back from V-representation
to H-representation (but that is not of interest here).

Example 1. Here we consider a slightly more com-
plicated toy example. We let k = 10 and imposed two
equality and two inequality constraints. The equali-
ties were p5 = p6 and

∑

i i · pi = 5.5. The inequalities
were p1 ≤ p2 and p1 +p2 +p3 +p4 ≤ 0.5. We had two
linear functions of interest. We let ψ1 be the variance
function defined by ψ1(i) = (i − 5.5)2 and let ψ2 be
the indicator function of the set {2, 3, 4, 5}. In order
to do the posterior calculations we needed to specify
probabilities of seeing the observed data, x, under the
10 possible parameter values. These are the diagonal
elements of Λx and were taken to be 0.1, 0.15, 0.09,
0.2, 0.3, 0.2, 0.1, 0.05, 0.07 and 0.02.

The R code to create the H-representation is

> d <- 10

> qux <- makeH(-diag(d), rep(0,d),

+ rep(1,d), 1)

> qux <- addHeq(c(0,0,0,0,1,-1,0,0,0,0),

+ 0, qux)

> qux <- addHeq(1:d, 5.5, qux)

> qux <- addHin(c(1,-1,0,0,0,0,0,0,0,0),

+ 0, qux)

> qux <- addHin(c(1,1,1,1,0,0,0,0,0,0),

+ 0.5, qux)

and to create the V-representation is

> out <- scdd(qux)

> vert <- out$output[ , -(1:2)]

> dim(vert)

[1] 28 10

The second line in the above throws away the first
two columns of out$output to create the matrix vert
whose rows contain all the vertices of P for this ex-
ample. The function dim finds the dimensions of vert
and we see that the V-representation vert contains 28
vertices.

Next we find R(Ψ). The code to do this is given just
below.

> Psi <- rbind((1:d - 5.5)^2,

+ c(0,1,1,1,1,0,0,0,0,0))

> rang <- vert %*% t(Psi)

> plot(rang, xlab="", ylab = "")

> fred <- chull(rang)

> polygon(rang[fred, ])

> length(fred)

[1] 7

We begin by creating the matrix Ψ. This is done with
the rbind command which binds row vectors together
to form a matrix. The next line finds R(Ψ) which
here we call rang (%*% denotes matrix multiplication
in R and t is the transpose function). The next three
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Figure 1: The plot of R(Ψ) for Example 1. The hori-
zonal axis is Ep(ψ1) and the vertical axis is Ep(ψ2).

lines create the plot shown in Figure 1. The chull

(for convex hull) function finds the extreme points of
rang. The last line tells us that the polygon R(Ψ)
has 7 vertices.

Next we find Px as follows

> Lambda <- diag(c(0.1, 0.15, 0.09, 0.2,

+ 0.3, 0.2, 0.1, 0.05, 0.07, 0.02))

> post <- vert %*% Lambda

> norm <- apply(post, 1, sum)

> post <- sweep(post, 1, norm, "/")

where Lambda is the matrix Λx, the first assignment
to post creates the image of P under p 7→ Λxp, and
the apply and sweep commands are the R way of
normalizing the rows of the matrix to sum to one.

The calculation of Rx from Px is just like the calcu-
lation of R from P and is not shown (just do to post

what we did to vert above). The result is shown in
Figure 2. It has 9 vertices.

A feature of the rcdd package that we have not il-
lustrated but which is important in applications is
its ability to use exact unlimited precision rational
arithmetic. This is necessary in large problems where
rounding error in conventional computer arithmetic
may cause failure of the algorithm used by cddlib.
Rationals are represented as simple character strings,
for example, "-13/15", and rcdd contains functions
to convert between rational representations and con-
ventional computer floating point numbers.
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Figure 2: The plot of Rx(Ψ) for Example 1. The
horizonal axis is Ep(ψ1|x) and the vertical axis is
Ep(ψ2|x).

4 Approximate Solutions

In this section we consider the situation where Θ is a
bounded interval of real numbers and the constraints
and prior information are specified by equality and
inequality constraints on integrals.

Kemperman (1968) considered the situation where
the possible states of nature were an interval of real
numbers and the family of probability measures was
defined by equality constraints on a finite set of expec-
tations. He showed that the set of possible expected
values for a given function was a closed interval of
real numbers. Moreover, the endpoints of this interval
correspond to distributions concentrated on finite sets
whose size is at most the number of constraints plus
one. This allows for solutions to be found approxi-
mately using linear programming. Kemperman (1968,
p. 96) briefly considered the more general problem of
finding the joint range of the expectations of a set of
functions (ψ1, . . . , ψk). He noted that the range of this
vector over the family defined by the constraints is a
convex set in k-dimensional Euclidian space. The clo-
sure of this space is completely determined by all its
supporting hyperplanes. These hyperplanes can be
determined by finding the maximum and minimum
values of

∑k

i=1
aiψi for all possible choices of the ai’s.

This suggests that in such cases one can find R(Ψ)
approximately by specifying a finite subset of values
in Θ and solving the corresponding finite problem.
We now show how this works in two simple examples.
For both examples we assume that Θ = [−1, 1] but
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Figure 3: The plot of R(Ψ) for a grid of 21 points
for Example 2. The horizonal axis is Ep(ψ1) and the
vertical axis is Ep(ψ2).

we will restrict ourselves to priors whose support is
just a finite number of points.

Example 2. We assume that the prior information
is defined by the constraints

P (θ ≤ −0.6) ≥ P (θ ≥ 0.6)

P (θ < −0.9) ≤ P (−0.9 ≤ θ < −0.8)

P (−0.9 ≤ θ < −0.8) ≤ P (−0.8 ≤ θ < −0.7)

P (−0.8 ≤ θ < −0.7) ≤ P (−0.7 ≤ θ < −0.6)

0.3 ≤ P (−0.3 ≤ θ ≤ 0.3) ≤ 0.5

P (0.6 ≤ θ < 0.7) ≥ P (0.7 ≤ θ < 0.8)

P (0.7 ≤ θ < 0.8) ≥ P (0.8 ≤ θ < 0.9)

P (0.8 ≤ θ < 0.9) ≥ P (θ > 0.9)

E(θ) = −0.15

We selected as our grid the sequence of 21 equally
spaced values running from −1.0 to 1.0 and con-
structed the matrix incorporating our constraints. We
then ran scdd to find the vertices of the polytope of
distributions which are defined on our grid and satisfy
the constraints. This took just a couple of seconds
on our PC and found 1,236 vertices. We let ψ1 be
the indicator function of the interval [−1.0, 0.0] and
ψ2(θ) = (θ+0.15)2. Next we found that R(Ψ) had 17
extreme points. Its plot is given in Figure 3. We can
see for any fixed value of P (θ ≤ 0) the approximate
range of the variance of θ. Or for any fixed value of
the variance of θ we can see the approximate range of
P (θ ≤ 0).
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Figure 4: The plot of the boundary of R(Ψ) for a
grid of 41 points for Example 3. The horizonal axis is
Ep(ψ1) and the vertical axis is Ep(ψ2).

Example 3. We assume that the prior information
yields the constraints

P (θ ≤ −0.6) ≥ P (θ ≥ 0.6)

P (θ ∈ [−1.0,−0.8]) ≤ P (θ ∈ [−0.75,−0.50])

0.3 ≤ P (−0.3 ≤ θ ≤ 0.3) ≤ 0.5

−0.3 ≤ E(θ) ≤ 0.2

We selected as our grid the sequence of 41 equally
spaced values running from −1.0 to 1.0 and then con-
structed the matrix incorporating our constraints. We
then ran scdd to find the vertices of the polytope of
distributions which are defined on our grid and satisfy
the constraints. This took two or three minutes on
our PC and found 58,528 vertices. We set ψ1(θ) = θ
and ψ2(θ) = θ2 and found that R(Ψ) had 12 extreme
points and its plot is given in Figure 4.

In imprecise probability theory one is often interested
in finding not only the range of the expected value
of a function but the range of its variance as well.
See for example (Walley, 1996). This range can be
determined approximately just by studying our plot
since for each point the variance is Ep(θ

2)− [Ep(θ)]
2.

For example the maximum value for the variance is
in the neighborhood of 0.65 and will arise from a dis-
tribution whose mean is close to zero. Furthermore
as Epψ1 moves away from zero the maximum value
of the variance will behave roughly as Epψ2 while the
minimum value increases slightly. We believe that the
consideration of such plots can prove helpful in the
elicitation and assessment of prior information and
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Figure 5: The plot of the boundary of R(Ψ) for 10
randomly selected grids of 30 points for Example 3.
The horizonal axis is Ep(ψ1) and the vertical axis is
Ep(ψ2).

beliefs.

Note that in the last two examples where Θ is an inter-
val our plots only provide inner bounds for the true
ranges. This suggests some natural questions. Can
one find an outer bound? Failing that, can one find
a bound on the error of our bound? How should one
select the finite subset of points of Θ to compute our
inner bound? Good questions all, but unfortunately
we have no theoretical answers for them.

If in Example 3 we use grids with just 30 points,
then the calculations take only a few seconds. To
study how the choice of grid can affect our answer
we selected 10 random samples of size 30 from the
uniform distribution on the interval [−1, 1] to use as
grids. In Figure 5 we plotted the resulting 10 ranges
of (Epψ1, Epψ2). The convex set generated by these
10 ranges must be an inner bound as well and seems
to be just about as large as the inner bound given in
Figure 4. This suggests that R(Ψ) is probably not
too much larger than the plot given in Figure 4. But
of course we cannot know for sure without some the-
oretical results.

5 Discussion

Betrò and Gugliemi (2000) considered robust
Bayesian analysis under moment constraints in a
fairly abstract setting and concluded that none of the
current algorithms were good enough to be adopted

for routine use. We have argued here, for prob-
lems with finitely many states of nature, that modern
computational geometry algorithms make specifying
a family of possible prior distributions through a col-
lection of linear constraints practical. This allows one
to combine ease of specification with ease of comput-
ing for both prior and posterior expectations of not
just one function of interest but any finite set of func-
tions. Plotting the range of the prior expectations for
different pairs of functions should be helpful in find-
ing good approximations to one’s prior beliefs and the
corresponding posterior consequences.

A special case of conversion from H-representation
to V-representation is called the vertex enumeration

problem in the computational complexity literature
(Fukuda, 2004b), and, as far as we know, its com-
plexity is still an open question. However, the fact
that the computational complexity of the simplex al-
gorithm for linear programming was open for many
years and finally resolved as worst-case exponential
complexity in no way prevented the simplex algorithm
from having a huge variety of important applications.
The computational geometry code in cddlib may not
have known computational complexity, but many sci-
entists have found it useful in a wide variety of appli-
cation areas. We claim it may be useful in imprecise
probability.

We should say that, although we have presented our
examples using these computational geometry algo-
rithms, that some of the problems we address can be
recast so as to require only the solution of multiple
linear programming problems. Since linear program-
ming is now known to have polynomial time complex-
ity, such an algorithm would also have polynomial
time complexity if the number of linear programs to
be solved were also polynomial. Therefore, for very
large problems that can be recast in this form, algo-
rithms based on linear programming should be used
instead of rcdd.

Although the algorithms we present may not have op-
timal worst-case computational complexity, their ge-
ometric nature makes their operation transparent so
they are very easy to use and experiment with. If
our approach turns out to have important large scale
applications, then would be the time to switch to mul-
tiple linear programming algorithms.

An easy way to try out our approach in simple prob-
lems is to go to

http://www.stat.umn.edu/geyer/imprecise/

where our Example 1 is redone via Rweb (R on the
web). One can modify the code in the example by
simply editing the text in the web form and thus do



small experiments with the technique.

For serious work you need to install cddlib, the GNU
multiple precision (GMP) library that it requires, R,
and our rcdd package. Instructions for doing this are
at

http://www.stat.umn.edu/geyer/rcdd/
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