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Abstract


This article presents a probabilistic logic whose sen-
tences can be interpreted as asserting the acceptabil-
ity of gambles described in terms of an underlying
logic. This probabilistic logic has a concrete syntax
and a complete inference procedure, and it handles
conditional as well as unconditional probabilities. It
synthesizes Nilsson’s probabilistic logic and Frisch and
Haddawy’s anytime inference procedure with Wilson
and Moral’s logic of gambles.


Two distinct semantics can be used for our prob-
abilistic logic: (1) the measure-theoretic semantics
used by the prior logics already mentioned and also
by the more expressive logic of Fagin, Halpern, and
Meggido and (2) a behavioral semantics. Under the
measure-theoretic semantics, sentences of our prob-
abilistic logic are interpreted as assertions about a
probability distribution over interpretations of the un-
derlying logic. Under the behavioral semantics, these
sentences are interpreted only as asserting the accept-
ability of gambles, and this suggests different direc-
tions for generalization.


Keywords. Probabilistic Logic, Anytime Deduction,
Gambles, Measure-theoretic, Behavioral Semantics.


1 Introduction


This article presents a probabilistic logic whose sen-
tences can be interpreted as asserting the acceptabil-
ity of gambles. This logic has a concrete syntax and
a complete inference procedure, and it handles condi-
tional as well as unconditional probabilities. It syn-
thesizes the probabilistic logic of Nils J. Nilsson [7]
and the anytime inference procedure of Alan M. Frisch
and Peter Haddawy [3] with the logic of gambles of
Nic Wilson and Seraf́ın Moral [13].


Nilsson and Frisch and Haddawy build their proba-
bilistic logics, which we designate by LN and LFH ,
respectively, on top of an underlying logic. According


to their semantics, which we call the measure-theoretic
semantics for probabilistic logic, each sentence says
something about the probability of a sentence in the
underlying logic. Our probabilistic logic, which we
designate by L, also has an underlying logic, and can
use measure-theoretic semantics. When it does use
this semantics, it is a strict generalization of Nilsson’s
and Frisch and Haddawy’s logics: a sentence in LN


or LFH translates into L with no change in meaning.
L also contains more complex sentences. Instead of
merely saying something about the probability of an
individual sentence of the underlying logic, a sentence
in L may say something about the expected value of
a gamble whose payoff depends on the truth values of
several sentences in the underlying logic.


Moreover, whereas Nilsson only discusses how to rea-
son with models, and Frisch and Haddawy do not
demonstrate completeness for their set of inference
rules, we give a complete set of inference rules for L.


In generalizing from probabilities to expected values,
we are following Wilson and Moral, and our demon-
stration of the completeness of our logic uses the com-
pleteness of their logic, which we designate by LWM .
We go well beyond their results, however, because we
handle conditional as well as unconditional probabil-
ities and we insist on a concrete syntax.


There is a large body of other important related
work on probabilistic logic that is not mentioned in
this paper ([1] and [4] include reviews of this litera-
ture). Fagin, Halpern and Meggido [2], have formu-
lated probabilistic logics that use measure-theoretic
semantics, and have complete inference procedures.
Fagin, Halpern, and Meggido consider only the case
where the underlying logic is propositional logic, but
in this case, their probabilistic logics are more ex-
pressive than ours. In the case where our probabilis-
tic logic L uses measure-theoretic semantics and uses
propositional logic as its underlying logic, it can be re-
garded as a relatively small fragment of one of Fagin,
Halpern, and Meggido’s logics, but it is still of some







interest, because it enables complete inference about
relatively elementary probability statements (includ-
ing those considered by Nilsson and by Frisch and
Haddawy) without the greater complexity of Fagin,
Halpern, and Meggido’s logics. In [5], Halpern and
Pucella consider upper probability measures, and in
[6] they add reasoning about expectation.


What we find most interesting about L, however, is
an alternative semantics that suggests paths for gen-
eralization different from the paths followed by other
authors. This alternative semantics, which we call
behavioral semantics, hews more closely to the no-
tion of acceptability and can be formalized using the
concept of lower prevision developed by Peter Walley
[12]. In measure-theoretic semantics, an interpreta-
tion for a probabilistic logic is a probability distribu-
tion over interpretations for the underlying logic. A
gamble is acceptable if this probability distribution
gives the gamble nonnegative expected value. But
this implies that if a gamble is not acceptable, then
the opposite gamble (the gamble with the signs of
all the payoffs reversed) is acceptable. No such im-
plication is inherent in the notion of a gamble being
acceptable, and no such implication is built into our
probabilistic logic (the syntax considered in this arti-
cle does not even provide for negation of acceptability
statements). Behavioral semantics avoids these impli-
cations and therefore can be extended to martingale
trees [8] and probability games [11]; see [10].


1.1 Comparative Summary


Table 1 summarizes how our logic compares with the
others we have been discussing. As the table indi-
cates, our approach is a synthesis, which combines
the best features of the other approaches.


LN LFH LWM L
Complete inference
procedure Yes No Yes Yes


Anytime inference
procedure No Yes Yes Yes


Elaboration tolerant No Yes No Yes


Concrete syntax No Yes No Yes


Handles conditional
probabilities No Yes No Yes


Hyperplane expressive No No Yes Yes


Table 1: Comparison of Related Work


When we say that Nilsson’s system does not have an
anytime inference procedure, we mean that the linear
program must be run to completion. In contrast our
language, like that of Frisch and Haddawy, is modular,
and interim inferences are valid even though they may
not have computed the tightest possible bounds.


Another advantage of modularity is elaboration tol-
erance: additional premises can be introduced and
additional questions can be asked without discarding
or repeating work already done. Our language, like
Frisch and Haddawy’s, is elaboration tolerant in this
sense. Notice, however, that we have labeled Wilson
and Moral’s language as elaboration intolerant, even
though it seems to have an anytime inference proce-
dure. This is because its inference procedure takes
for granted that the sample space has already been
set up. When we introduce a new sentence, whether
as a premise or a goal, old possibilities may split, ac-
cording to whether the new sentence is true or false.
So no system that takes the sample space for granted
is elaboration tolerant.


Our assertion that Wilson and Moral do not have
a concrete syntax refers to the fact that they do
not specify any particular symbolic representation for
their gambles. They specify syntax neither for their
probabilistic logic nor for an underlying logic L0. Nils-
son, in contrast, does insist on a concrete syntax for
the underlying logic L0, although he does not specify
a syntax for his probabilistic logic.


When we say that Wilson and Moral do not handle
conditional probabilities, we mean only that they do
not do so explicitly. A bound on a conditional proba-
bility can easily be re-expressed as a statement of the
type they do handle.


When we say that our logic and that of Wilson and
Moral are hyperplane expressive, we are referring to
the fact that these logics can express an arbitrary lin-
ear constraint on a vector of probabilities P , which
requires P to lie on one side of a hyperplane. As we
have noted, such linear constraints can be much more
general than bounds on individual probabilities and
conditional probabilities.


As we will see, each of the other three logics can be
seen as a simplification of the probabilistic logic L de-
veloped in this article. L is not, however, the most ex-
pressive probabilistic logic possible. It can bound the
vector of probabilities P by hyperplanes, and hence it
can express the statement that P is in a given simplex,
but it cannot express more complicated restrictions on
P . For example, it cannot express statements about
the probability p of a single sentence in the underlying
logic such as “0.3 ≤ p ≤ 0.5 or 0.5 ≤ p ≤ 0.7.” Prob-
abilistic logics that can express such statements in-
clude those of Fagin, Halpern, and Megiddo [2], which
make use of rich inferential machinery including all
instances of propositional tautologies, modus ponens,
all instances of valid formulae about linear inequali-
ties, and four axioms for probability. However, their
probability axioms are derivable within our logic L.







2 Syntax and Inference for L
We designate our probabilistic logic by L. In this sec-
tion, we describe L’s syntax and inference procedure.
This description involves some informal explanation
of L’s semantics. In the next two sections, we formal-
ize the semantics in two different ways and demon-
strate the soundness and completeness of the inference
procedure with respect to both formalizations.


The sentences of L are the form


〈(α1, a1) . . . (αn, an) | δ〉, (1)


where n is a nonnegative integer, α1, . . . , αn and δ are
sentences of an underlying logic L0, and a1, . . . , an are
real numbers. The list (α1, a1) . . . (αn, an) represents
a gamble, which pays the sum of those ai for which
the corresponding sentence αi turns out to be true.
Sentence (1) means that this gamble is acceptable to
an agent when his knowledge relative to the sentences
in L0 consists of knowledge that δ is true. In the
next two sections, we make this idea into a formal
semantics in two different ways. In §3, we formalize
it as the condition that the payoff of the gamble has
nonnegative expected value conditional on δ; because
the expected value has to be computed relative to
some probability distribution, this constitutes a use
of what we have already called measure-theoretic se-
mantics for probabilistic logic. In §4, we formalize it
in terms of our behavioral semantics, in which proba-
bility distributions are replaced by lower previsions.


If the sentence δ in L0 is a tautology, then
the sentence (1) in L means that the gamble
(α1, a1) . . . (αn, an) is acceptable to the agent a pri-
ori. This is the special case of unconditional accept-
ability of gambles, considered by Wilson and Moral.
But even here we differ from Wilson and Moral by
representing gambles in terms of sentences of an un-
derlying logic rather than merely as functions on a
sample space.


2.1 The Underlying Logic L0


We assume that the underlying logic L0 is two-valued
and uses the symbols ¬, ∧, ∨, ⊥, and > in the usual
way together with propositional symbols p, p′, p′′, etc.
We use ⇒0 and ⇔0, respectively, for derivability and
logical equivalence: α1 ⇒0 α2 means that α2 can be
derived from α1 (i.e., α1 `L0 α2), and α1 ⇔0 α2


means that either can be derived from the other (i.e.,
α1 `L0 α2 and α2 `L0 α1).


We assume that L0 has a sound and complete infer-
ence procedure, so that α1 ⇔0 α2 holds whenever the
two are semantically equivalent. We assume that L0’s
inference procedure is complete only because we need


this assumption in order to show completeness for L.
It is not needed in order for L’s inference procedure
to be well-defined and sound.


We make no further assumptions about L0, but rea-
soning within L0 is part of reasoning within L and so
details about L0 are relevant to implementation. Un-
like Fagin, Halpern, and Megiddo’s logics, however,
propositional reasoning takes place only within L0.


Let us write wff 0 for the set consisting of all sentences
of L0. Given a truth assignment M for L0, let us des-
ignate by ωM the interpretation it determines—this is
a mapping from wff 0 to {true, false}. And let us write
Ω0 for the set consisting of all such interpretations:


Ω0 := {ωM | M is a truth assignment for L0}.


We call Ω0 the sample space for L0. This concept
should be contrasted with the notion of the sample
space for a finite set of sentences in L0, used in Nils-
son’s work. Whereas we might explicitly construct the
sample space for a few hundred sentences, there is no
reasonable sense in which we can explicitly construct
Ω0. If L0 is undecidable, explicit construction of Ω0


is not even theoretically possible. But as a theoretical
(rather than a computational) object, Ω0 will be very
useful in our mathematical reasoning about L.


We call any real-valued function on Ω0 a variable.
Given a variable X on Ω0 and a subset A ⊆ Ω0, we
define a variable XA by


XA(ω) :=
{


X(ω) if ω ∈ A,
0 otherwise. (2)


We call XA the restriction of X to A. We can write
XA = X · IA, where IA is A’s indicator variable:


IA(ω) :=
{


1 if ω ∈ A,
0 otherwise. (3)


This makes it clear that (X1 + X2)A = XA
1 + XA


2 ,
(rX)A = rXA, and (XA)B = XA∩B .


Given α ∈ wff 0, let [α] be the subset of Ω0 consisting
of those truth assignments that assign α the value
true:


[α] := {ω ∈ Ω0 | ω(α) = true}.


The set


A0 := {[α] | α ∈ wff 0}


is a field of subsets of Ω0; it is isomorphic to L0’s
Lindenbaum-Tarski field. We call a finitely additive
probability measure on the field A0 a probability dis-
tribution on Ω0.







2.2 Gambles in L0


We call an ordered pair (α, a), where α ∈ wff 0


and a is a real number, a ticket. We call a list
(α1, a1) . . . (αn, an), where n is a nonnegative integer
and the (αi, ai) are tickets, a gamble. The αi are the
sentences of the gamble; the ai are the payoffs. The
integer n may be zero; in this case the gamble is an
empty list. Notice also that a ticket may occur in a
gamble more than once. We write Gamble for the set
consisting of all gambles. We use meta-variables such
as G,G′, etc. to designate gambles without specifying
the tickets they contain.


Given a gamble G = (α1, a1) . . . (αn, an), we define a
variable XG by


XG(ω) :=
∑{ai|1 ≤ i ≤ n and ω(αi) = true


=
n∑


i=1


ai · I[αi](ω). (4)


We call XG the variable representation for the gamble
G. Many different gambles can be represented by the
same variable. We call a variable X simple if X = XG


for some gamble G. A variable is simple if and only if
(1) it takes only a finite number of values, and (2) for
each real number r, there exists α ∈ wff 0 such that
{ω | X(ω) = r} = [α] (in the language of probability
theory, X is measurable with respect to A0).


Here is our notation for manipulating gambles:


• Given a gamble G = (α1, a1) . . . (αn, an) and a
sentence β in L0, we write Gβ for the result of
conjoining each αi with β:


Gβ := (α1 ∧ β, a1) . . . (αn ∧ β, an).


• Given a gamble G = (α1, a1) . . . (αn, an) and a
real number r, we write rG for the result of mul-
tiplying each ai by r:


rG := (α1, ra1) . . . (αn, ran).


• Given gambles G = (α1, a1) . . . (αn, an) and G′ =
(β1, b1) . . . (βm, bm), we write GG′ for the result
of concatenating G and G′:


GG′ := (α1, a1) . . . (αn, an) (β1, b1) . . . (βm, bm).


These manipulations affect the variable representa-
tion in obvious and straightforward ways: XGβ =
X


[β]
G (see equation (2)), XrG = rXG, and XGG′ =


XG + XG′ .


We sometimes want to append a ticket to a gamble or
remove an instance of a ticket from a gamble:


• Appending a ticket to a gamble means adding
it at the end, without regard to whether it al-
ready occurs in the gamble. For example, the
result of appending (β, b) to (α, a) (β, b) (γ, c) is
(α, a) (β, b) (γ, c) (β, b).


• Removing an instance of (β, b) from
(α, a) (β, b) (γ, c) (β, b) can result in either
(α, a) (β, b) (γ, c) or (α, a) (γ, c) (β, b).


Here are ten important ways of changing a gamble.
We call them elementary moves:


0 permute the order of the tickets
1 append (α, 0)
2 remove an instance of (α, 0)
3 append (⊥, a)
4 remove an instance of (⊥, a)
5 remove an instance of (α, a), and append


(α, a1) and (α, a2), where a1 + a2 = a
6 remove an instance of (α, a1) and an instance of


(α, a2), and append (α, a1 + a2)
7 remove an instance of (α, a), and append (β, a)


and (γ, a), where β ∧ γ ⇔0 ⊥ and β ∨ γ ⇔0 α
8 remove an instance of (β, a) and an instance of


(γ, a), and append (α, a), where β ∧ γ ⇔0 ⊥
and β ∨ γ ⇔0 α


9 remove an instance of (α, a) and append (β, a),
where β ⇔0 α


We say that two gambles G and G′ equivalent if we can
get from one to the other by elementary moves—i.e., if
there is a finite sequence of gambles G1, . . . , Gk such
that G1 = G, Gk = G′, and Gi+1 can be obtained
from Gi by an elementary move, for i = 1, . . . , k − 1.
This is evidently an equivalence relation. Elementary
moves in part are similar to Fagin, Halpern, and Meg-
gido’s valid formulae about linear equalities and in
part capture intuitions regarding the decomposition
of gambles and the nature of probability.


Proposition 2.1 Gambles G and G′ are equivalent
if and only if XG = XG′ .


It is easy to see that XG = XG′ when G′ is obtained
from G by an elementary move, and this implies that
XG = XG′ whenever G and G′ are equivalent. So our
task is to show that XG = XG′ implies the equivalence
of G and G′.


To this end, we introduce some additional concepts.
We say that two of L0’s sentences α and β are
disjoint if α ∧ β ⇔0 ⊥. We say that a gamble
(α1, a1) . . . (αn, an) is in standard form if the follow-
ing conditions are satisfied:


• The sentences are disjoint: αi ∧ αj ⇔0 ⊥ for
i 6= j.







• No sentence is absurd: αi 6⇔0 ⊥ for all i.


• No payoff is zero: ai 6= 0 for all i.


• The payoffs are distinct and in increasing order:
a1 < · · · < an.


Lemma 2.2 Any gamble is equivalent to a gamble in
standard form.


Proof: Consider a gamble G = (α1, a1) . . . (αn, an).
By repeated elementary moves of type 7, we can re-
duce G to an equivalent gamble G1 in which every
ticket’s sentence has the form


β1 ∧ · · · ∧ βn, (5)


where for each i, either βi = αi or else βi = ¬αi.
(We ignore the placement of parentheses in the ex-
pression (5), but we assume that these parentheses
are placed in some canonical way, using if necessary
elementary moves of type 9.) Any two sentences in
G1 are either disjoint or equivalent. Using elementary
moves of type 6 and 9, we can consolidate the tickets
with equivalent sentences, reducing G1 to an equiv-
alent gamble G2 whose sentences are disjoint. Using
repeated elementary moves of type 8, we can reduce
G2 to an equivalent gamble G3 whose sentences are
still disjoint and whose payoffs are all distinct. Ele-
mentary moves of types 0, 2, and 4 will then reduce
G3 to an equivalent gamble in standard form.


Lemma 2.3 If G and G′ are in standard form, and
XG = XG′ , then G and G′ are equivalent.


Proof: As XG = XG′ , the two gambles must have
the same list of payoffs a1, . . . , an. Since G and G′


are in standard form, G = (α1, a1) . . . (αn, an) and
G′ = (β1, a1) . . . (βn, an), where [αi] = [βi] for i =
1, . . . , n. So αi ⇔0 βi, and G can be transformed into
G′ by elementary moves of type 9.


We complete the proof of Proposition 2.1 by consider-
ing two gambles G1 and G2 such that XG1 = XG2 and
showing that they are equivalent. By Lemma 2.2, we
have gambles G′1 and G′2 that are in standard form
and are equivalent to G1 and G2 respectively. The
equivalence of G′i and Gi implies that XG′i = XGi ,
and hence that XG′1 = XG′2 . By Lemma 2.3, G′1 and
G′2 are equivalent. Hence G1 and G2 are equivalent.


2.3 The Syntax of L


As we have already explained, a sentence of L is any
expression of the form (1), where n is a nonnega-
tive integer, δ and α, . . . , αn are sentences of L0, and
a1, . . . , an are real numbers. Notice that n is allowed
to be zero, so that 〈 | δ〉 is a sentence of L.


We write wff for the set consisting of all sentences
of L. We speak of the gamble and the condi-
tion of an element of wff ; (α1, a1) . . . (αn, an) is
〈(α1, a1) . . . (αn, an) | δ〉’s gamble, and δ is its condi-
tion. We use meta-variables such as S, S′, etc. to des-
ignate elements of wff without specifying their gam-
bles or conditions.


Notice that we do not form negations of the sentences
in L: when S is a sentence of L, ¬S is not a sentence
in L. Nor do we form conjunctions or disjunctions.


2.4 Inference in L


We now define an inference relation ` for L.


We adopt one axiom schema and five inference rules.
The axiom schema applies to any α, δ ∈ wff 0 while
the inference rules apply to any G,G′ ∈ Gamble, and
any δ, ε ∈ wff 0.


Acceptability


Rationality ` 〈(α, 1) | δ〉.


Substitution 〈G | δ〉 ` 〈G′ | δ〉 if G and G′ are
equivalent.


Combination {〈G | δ〉, 〈G′ | δ〉} ` 〈GG′ | δ〉.
Scaling 〈G | δ〉 ` 〈rG | δ〉 if r ≥ 0.


Conditioning


Contingency 〈G | δ〉 ` 〈Gδ | ε〉 if δ ⇒0 ε.


Updating 〈Gδ | ε〉 ` 〈G | δ〉 if δ ⇒0 ε.


The axiom and first three rules capture our notion of
the acceptability of gambles, consistent with Wilson
and Moral’s approach or Walley’s sense of desirabil-
ity as applied to our formal notion of gambles. The
conditioning rules, on the other hand, capture a par-
ticular interpretation of conditional probabilities (the
“called-off bet” interpretation implicit in Frisch and
Haddawy’s system). Under this interpretation, con-
ditional probabilities can be defined in terms of un-
conditional probabilities, and so our logic could be
formulated more simply without using conditioning
sentences; our intention in future work, however, is to
study variants of our logic L in which the acceptabil-
ity axiom and rules are retained in conjunction with
weaker conditioning rules, and conditioning sentences
remain fundamental.


Inference proceeds in the usual way. One starts with
a set of premises and enlarges it in steps, including at
each either an axiom or a sentence whose inference is
authorized from sentences already in the set by one of







the inference rules. If Γ ⊆ wff , S ∈ wff , and we can
infer S from Γ in this way, then we write Γ ` S.


Implementing the inference rules involves, of course,
using the inference procedure of the underlying logic
L0. In order to use Contingency, for example, we
must show that ε can be inferred from δ. Inference in
L0 enters even into the use of Substitution, since
we need to demonstrate equivalence or implication in
L0 in order to prove the equivalence of two gambles.


The following proposition lists some elementary con-
sequences of our inference rules.


Proposition 2.4 1. 〈G | δ〉 ` 〈Gδ | δ〉 and
〈Gδ | δ〉 ` 〈G | δ〉.


2. 〈G | δ〉 ` 〈Gδ | >〉 and 〈Gδ | >〉 ` 〈G | δ〉.
3. If δ ⇔0 ε, then 〈G | δ〉 ` 〈G | ε〉.


Proof: We obtain the two inferences in Statement 1
by setting ε equal to δ in Contingency and Updat-
ing, respectively. We similarly obtain Statement 2 by
setting ε equal to >. To derive Statement 3, we start
with 〈G | δ〉, use Contingency to get 〈Gδ | ε〉, use
the equivalence of the gambles Gδ and Gε, together
with Substitution, to get 〈Gε | ε〉, and then use
Updating to get 〈G | ε〉.
It is noteworthy that the logic L includes an
absurdity—a sentence from which any other sentence
can be inferred. This is the sentence 〈(>,−1) | >〉.
This sentence says that our agent is willing to give
away $1 a priori, and the inference rules allow us to
infer from this that he will be willing to give away any
amount of money under any other state of knowledge
δ. If Γ ` 〈(>,−1) | >〉, then we say that Γ is incoher-
ent. More generally, if Γ ` 〈(δ,−1) | δ〉, then we say
that Γ is incoherent in δ.


3 Measure-Theoretic Semantics for L
As we have already explained informally, we can adapt
the measure-theoretic semantics for our language L by
using the notion of conditional expected value:


• An interpretation of L is a probability distribu-
tion P on the sample space Ω0.


• An interpretation P satisfies a sentence 〈G | δ〉
if P ’s expected value for the variable XG (see
equation (4)), conditional on δ, is nonnegative.


This definition of satisfaction is only informal. Our
formal definition will resolve the indeterminacy of
conditional expected value when the condition δ has
probability zero in a way consistent with Frisch and


Haddawy: the sentence is satisfied by the interpreta-
tion in this case.


In this section, we study the entailment relation for
L based on this measure-theoretic semantics and then
show that the inference procedure we described in the
preceding section is sound and complete with respect
to this relation. We explain our alternative semantics,
behavioral semantics in the next section.


3.1 Entailment Under Measure-Theoretic
Semantics


Formally, we say that P satisfies
〈(α1, a1) . . . (αn, an) | δ〉 if


n∑


i=1


ai · P ([αi] ∩ [δ]) ≥ 0. (6)


This inequality is equivalent to
n∑


i=1


ai · P ([αi] ∩ [δ])
P ([δ])


≥ 0, (7)


provided that we agree to the convention that the ra-
tio P ([αi] ∩ [δ])/P ([δ]) is equal to zero (and hence
inequality (7) is satisfied) whenever the denominator,
P ([δ]), is equal to zero. The left-hand side of inequal-
ity (7) is the conditional expected value of the vari-
able corresponding to the gamble (α1, a1) . . . (αn, an),
conditional on the event [δ]. This justifies the infor-
mal definition we offered a moment ago: P satisfies
〈G | δ〉 if the expected value of XG, conditional on δ,
is nonnegative. This treatment of conditional proba-
bility is mandated by the called-off bet interpretation
of conditional probability discussed earlier.


If we write G for the gamble (α1, a1) . . . (αn, an), then
we can rewrite the inequality (6) as a condition on the
variable representation for G:


EP X
[δ]
G ≥ 0, (8)


where EP represents the expected value operator for
P .


We write |=m for the measure-theoretic entailment
relation for L: Γ |=m S if and only if P satisfies S
whenever P satisfies S′ for all S′ ∈ Γ. As usual, we
abbreviate Γ |=m S to |=m S when Γ is empty; this
means that every interpretation P satisfies S.


3.2 Soundness Under Measure-Theoretic
Semantics


Now we verify that L’s inference procedure is sound
with respect to measure-theoretic semantics: if Γ ` G,
then Γ |=m G. It suffices to show that the axioms and
the inference rules are sound.







Rationality ` 〈(α, 1) | δ〉.
Every interpretation P satisfies 〈(α, 1) | δ〉, be-
cause the inequality (6) reduces to P ([α]∩[δ]) ≥ 0
for this sentence, and a probability is always non-
negative.


Substitution 〈G | δ〉 ` 〈G′ | δ〉 if G and G′ are
equivalent.
Soundness follows from the fact that the inequal-
ity (6) can be put in the form (8) and the fact
that equivalent gambles have the same variable
representation (Proposition 2.1).


Combination {〈G | δ〉, 〈G′ | δ〉} ` 〈GG′ | δ〉.
Soundness follows from the inequality (8) and the
relation X


[δ]
GG′ = X


[δ]
G + X


[δ]
G′ .


Scaling 〈G | δ〉 ` 〈rG | δ〉 if r ≥ 0.
Soundness follows from the inequality (8) and the
relation X


[δ]
rG = rX


[δ]
G .


Contingency 〈G | δ〉 ` 〈Gδ | ε〉 if δ ⇒0 ε.
Here we use the inequality (8) and the calculation
X


[ε]


Gδ = (X [ε]
G )[δ] = X


[ε]∩[δ]
G ; when δ ⇔0 ε, [ε] ∩


[δ] = [δ].


Updating 〈Gδ | ε〉 ` 〈G | δ〉 if δ ⇒0 ε.
Soundness follows by the same argument as for
Contingency.


3.3 Completeness Under Measure-Theoretic
Semantics


Now we verify that L’s inference procedure is com-
plete under measure-theoretic semantics: if Γ is finite
and Γ |=m S, then Γ ` S.


Lemma 3.1 If X
[δ]
G = X


[δ′]
G′ , then 〈G | δ〉 ` 〈G′ | δ′〉.


Proof: We have 〈G | δ〉 ` 〈Gδ | δ ∨ δ′〉 by Con-


tingency. Our hypothesis X
[δ]
G = X


[δ′]
G′ implies


XGδ = XG′δ′ . So by Proposition 2.1, Gδ and G′δ
′
are


equivalent, and therefore 〈Gδ | δ ∨ δ′〉 ` 〈G′δ′ | δ ∨ δ′〉
by Substitution. Finally, 〈G′δ′ | δ ∨ δ′〉 ` 〈G′ | δ′〉
by Updating.


Lemma 3.2 If X is simple and min X ≥ 0, then
there exist G ∈ Gamble and δ ∈ wff0 such that
X


[δ]
G = X and ` 〈G | δ〉.


Proof: Suppose a1, . . . , an are the values taken by
X, and for each i choose αi ∈ wff 0 such that
[αi] = {ω | X(ω) = ai}. Then X = XG, where
G := (α1, a1) . . . (αn, an). So X = X


[>]
G . Because the


ai are nonnegative, ` 〈(αi, ai) | >〉 for all i by Ra-
tionality and Scaling, and so ` 〈G | >〉 by Com-
bination.


Lemma 3.3 If r > 0 and X
[δ′]
G′ = rX


[δ]
G , then


〈G | δ〉 ` 〈G′ | δ′〉.


Proof: We have 〈G | δ〉 ` 〈rG | δ〉 by Scaling.
And because our hypothesis can be written in the
form X


[δ′]
G′ = X


[δ]
rG, we have 〈rG | δ〉 ` 〈G′ | δ′〉 by


Lemma 3.1.


Lemma 3.4 If X
[δ]
G = X


[δ1]
G1


+ X
[δ2]
G2


, then
{〈G1 | δ1〉, 〈G2 | δ2〉} ` 〈G | δ〉.


Proof: Because X
[δi]
Gi


= XGi
δi = X


[δ1∨δ2]


Gi
δi


(i = 1, 2),


we can infer 〈Gδ1
1 | δ1 ∨ δ2〉 and 〈Gδ2


2 | δ1 ∨ δ2〉 by
Lemma 3.1. We can then infer 〈Gδ1


1 Gδ2
2 | δ1 ∨ δ2〉


by Combination. Because X
[δ1∨δ2]


G1
δ1G1


δ1
= X


[δ1∨δ2]


G1
δ1


+


X
[δ1∨δ2]


G2
δ2


= X
[δ1]
G1


+ X
[δ2]
G2


= X
[δ]
G , we can then infer


〈G | δ〉 by Lemma 3.1.


To complete our demonstration of completeness, we
use the completeness of Wilson and Moral’s logic of
gambles LWM . Suppose Γ |=m S, where


Γ = {〈G1 | δ1〉, . . . , 〈Gk | δk〉} and S = 〈G | δ〉.


By virtue of the representation (8), this means that
an analogous entailment holds in LWM :


{X [δ1]
G1


, . . . , X
[δk]
Gk
} |=WM X


[δ]
G .


So, by the completeness of LWM ,


{X [δ1]
G1


, . . . , X
[δk]
Gk
} `WM X


[δ]
G .


This means that we can get from the variables
{X [δ1]


G1
, . . . , X


[δk]
Gk
} to the variable X


[δ]
G in a finite num-


ber of steps using Wilson and Moral’s axiom and two
inference rules [13]. In other words, X


[δ]
G is a pos-


itive linear combination (a linear combination with
positive coefficients) of X


[δ1]
G1


, . . . , X
[δk]
Gk


together with
a finite number of nonnegative simple variables. But
by Lemma 3.2, for any nonnegative simple variable X,
there is a sentence representing X that can be inferred
in L. And by Lemmas 3.3 and 3.4, we can infer from
a finite number of sentences with given representing
variables a sentence whose representing variable is any
positive linear combination of these variables. This
gets us to a sentence 〈G′ | δ′〉 such that X


[δ′]
G′ = X


[δ]
G .


Finally, by Lemma 3.1, we can then infer 〈G | δ〉.


4 Behavioral Semantics for L
In our behavioral semantics for L, which we study in
this section, we replace the concept of a probability
distribution with a concept of lower prevision adapted
from Walley [12].







The context for this section is the syntax and inference
procedure for L that we developed in §2. In particu-
lar, an underlying logic L0 is in place, and the sample
space Ω0 is defined. We leave aside, however, the se-
mantics developed in §3 to study a different semantics
for the same syntax and inference procedure.


4.1 Lower Previsions


Suppose Ω is a nonempty set andA is a field of subsets
of Ω. Write X for the linear space consisting of all
real-valued functions on Ω that are measurable with
respect to A and take only finitely many values. We
call a real-valued function E on X a lower prevision
for Ω if it satisfies these three conditions:


1. P (X) ≥ inf{X(ω) | ω ∈ Ω} for all X ∈ X .


2. P (X1+X2) ≥ P (X1)+P (X2) for all X1, X2 ∈ X .


3. P (rX) = rP (X) for all r ≥ 0 and X ∈ X .


We call a lower prevision satisfying condition 2 with
equality for all X1, X2 ∈ X a linear prevision.


The following proposition gives some insight into the
concepts of lower prevision and linear prevision by
relating them to more familiar concepts.


Proposition 4.1 1. A real-valued function P on
X is a linear prevision if and only if there is a
finitely additive probability measure P on (Ω,A)
such that


P (X) = EP X for all X ∈ X .


(Here EP is the expected value operator for P .)


2. A real-valued function P on X is a lower pre-
vision if and only if it is the lower envelope of
the expected value operators for a set of finitely
additive probability measures—i.e., if and only
if there is a set Λ of finitely additive probability
measures on (Ω,A) such that


P (X) = inf
P∈Λ


EP X for all X ∈ X .


Statement 1 is proven in §3.2 of Walley [12] and State-
ment 2 in §3.3. Notice, however, that our terminology
is not quite the same as Walley’s. He calls any real-
valued function on any set of real-valued functions
on Ω a lower prevision, and he relates the three con-
ditions that we have used as the definition of lower
prevision to a concept that he calls coherence. For an
explanation of our disagreement with Walley regard-
ing coherence, see [10].


Our motivation for considering lower previsions does
not derive from their relation to probability measures.
On the contrary, we regard lower previsions as more
fundamental than probability measures, because they
emerge more directly from the idea of the acceptabil-
ity of gambles. For the moment, let us follow Wilson
and Moral by thinking of the elements of X as gam-
bles, and let us write C for the subset of X consisting
of the gambles we consider acceptable. What should
C look like? According to the intuition that underlies
both our inference procedure for L and our definition
of lower prevision, C should satisfy three conditions
(see also Walley [12]):


1. If X1, . . . , Xn ∈ C, and r1, . . . , rn are positive real
numbers, then r1X1 + · · ·+ rnXn ∈ C.


2. If infω∈Ω X(ω) ≥ 0, then X ∈ C.
3. −1 /∈ C.


But it is easy to verify that if C verifies these condi-
tions, and we set


P (X) = sup{a | X − a ∈ C} (9)


for all X ∈ X , then P qualifies as a lower prevision,
and


P (X) ≥ 0 if and only if X ∈ C.
(Accepting X − a is the same as paying a for X, and
so (9) is the most one will pay for X. Thus P (X) ≥ 0
if and only if one will pay 0 for X.)


Conversely, starting with a lower prevision P , we can
set C := {X | P ≥ 0}, and C will satisfy our three
conditions. So we could define our behavioral se-
mantics directly in terms of C rather than in terms
of P . This would make behavioral semantics much
more transparent. Using lower previsions has the
advantage, however, of making the similarities with
measure-theoretic semantics transparent.


4.2 Entailment Under Behavioral Semantics


Here are the definitions of interpretation and satisfac-
tion in our behavioral semantics for L:


• An interpretation is a lower prevision on Ω0.


• An interpretation P satisfies a sentence 〈G | δ〉
if


P (X [δ]
G ) ≥ 0. (10)


This is quite parallel to measure-theoretic semantics,
where an interpretation, a probability distribution P


on Ω0, satisfies 〈G | δ〉 if EP (X [δ]
G ) ≥ 0. Because







the expected value operators for probability distribu-
tions are a special kind of lower prevision (namely,
linear previsions), we may say that behavioral seman-
tics generalizes measure-theoretic semantics.


We write |=b for the entailment relation for logic L
determined by this new definition of satisfaction.


4.3 Soundness Under Behavioral Semantics


The demonstration that L’s axioms and inference
rules are sound with respect to behavioral semantics
proceeds just like the demonstration with respect to
measure-theoretic semantics (§3.2).


4.4 Completeness Under Behavioral
Semantics


The completeness of L under behavioral semantics
follows easily from its completeness under measure-
theoretic semantics.


Suppose, indeed, that Γ |=b S, where


Γ = {〈G1 | δ1〉, . . . , 〈Gk | δk〉} and S = 〈G | δ〉.
This means that if P is a lower prevision and
P (X [δi]


Gi
) ≥ 0 for i = 1, . . . , k, then P (X [δ]


G ) ≥ 0.
Because a linear prevision is a lower prevision, this
means in particular that if EP X


[δi]
Gi


≥ 0 for i =


1, . . . , k, then EP X
[δ]
G ≥ 0. In other words, Γ |=m S,


where |=m is the entailment relation under measure-
theoretic semantics. So we obtain Γ ` S from com-
pleteness under measure-theoretic semantics.


5 Translating LN and LFH into L
Nilsson, in LN , began with sentences of the form
P(α) = a and inferred sentences of the more general
forms a ≤ P(α) and P(α) ≤ b. In order to translate
these sentences into L, we can be guided by a fact
about the common semantics: the probability of an
event A under an interpretation P is the same as the
expected value under P of the indicator variable IA.
This produces the translations shown in Table 2.


Sentence Equivalent condition Sentence in L
in LN on P


a ≤ P(α) EP (I[α] − a) ≥ 0 〈(α, 1) (>,−a) | >〉
P(α) ≤ b EP (b− I[α]) ≥ 0 〈(>, b) (α,−1) | >〉


Table 2: Translating from Nilsson’s logic LN to L.


In Frisch and Haddawy’s logic LFH , a sentence simul-
taneously expresses a lower and an upper bound on a
conditional probability:


P(α | δ) ∈ [a, b]. (11)


How should we translate this sentence into L? The
most natural approach might be to add the condition
δ to the translations of a ≤ P(α) and P(α) ≤ b in
Table 2. This produces two sentences:


〈(α, 1) (>,−a) | δ〉 and 〈(>, b) (α,−1) | δ〉. (12)


Another approach is to translate the sentence (11)
directly into a condition on an interpretation P :


a ≤ P ([α] ∩ [δ])
P ([δ])


≤ b. (13)


Under the convention that the ratio is zero when its
denominator is zero, condition (13) is equivalent to
the two conditions


P ([α]∩[δ])−a·P ([δ]) ≥ 0 and b·P ([δ])−P ([α]∩[δ]) ≥ 0,


and these two conditions are naturally expressed in L
by the two sentences


〈(α∧δ, 1) (δ,−a) | >〉 and 〈(δ, b) (α∧δ,−1) | >〉 (14)


Both (12) and (14) are correct; the sentences
〈(α, 1) (>,−a) | δ〉 and 〈(α ∧ δ, 1) (δ,−a) | >〉
are equivalent to each other, and the sentences
〈(>, b) (α,−1) | δ〉 and 〈(δ, b) (α ∧ δ,−1) | >〉 are
equivalent to each other.


Because the sentences (11) in LFH have the same in-
terpretation as the sentences (14) in L (both mean
that the condition (13) holds under the convention
that the ratio is zero when the denominator is zero),
this translation is in fact a translation of LFH into our
probabilistic logic. So we may say that we have ex-
tended Frisch and Haddawy’s logic and added a sound
and complete inference procedure. Together with the
soundness of their inference rules, this implies that
their inference rules are consequences of ours.


There is one complication, deriving from the fact one
of Frisch and Haddawy’s is represented by two of our
sentences. Because of their representation, Frisch and
Haddawy introduce the following inference rule:


P(α | δ) ∈ [x, y]
P(α | δ) ∈ [u, v]
P(α | δ) ∈ [max(x, u),min(y, v)]


This rule can be seen as an embodiment of the any-
time character of their logic LFH ; if we apply this
rule whenever it can be applied, we always know the
tightest bounds on the probability of α given δ that
are justified by our computation so far. Because we
express the lower and upper bounds separately, we
have no need for such an inference rule, but in an im-
plementation we could, of course, track the largest a
for which 〈(α∧δ, 1) (δ,−a) | >〉 is in our database and
the smallest b for which 〈(δ, b) (α∧ δ,−1) | >〉 is in it.







6 Summary and Conclusions


Why stop with a language that is only hyperplane ex-
pressive? Why not further expand the language so
that it can say anything one pleases about the prob-
abilities of sentences in the underlying logic? There
are two obvious ways to answer this question:


• If we are really only interested in the probabilities
of individual sentences, as Nilsson and Frisch and
Haddawy appeared to be, then there is no reason
to generalize further.


• We might feel that we want more than bounds on
individual probabilities, but that hyperplane ex-
pressiveness is enough. Most practical work with
probabilities is directed towards decision-making,
and we might argue that decisions depend only
on the acceptability of gambles.


We might also challenge the ontological role of proba-
bilities. Is a probability something with a reality of its
own, or is it only a way of expressing our attitudes? If
it is only a way of expressing our attitudes, and if the
attitudes in question come down to the willingness to
accept gambles, then we step outside what is mean-
ingful when we go beyond hyperplane expressiveness.
This is the view taken by Walley.


Walley’s view throws into question, of course, the pre-
sumption that a probabilistic logic should use prob-
ability measures as interpretations. If the reality to
which we are referring has only acceptable gambles,
then perhaps these, not probabilities, should be our
interpretations. Perhaps also some of our inference
rules should be reconsidered. In particular, the con-
ditioning rule Updating can be called into question,
for it does not have a clear direct justification in terms
of the acceptability of gambles.


Our work in this area is motivated by our interest in
moving beyond standard probability measures as a se-
mantics for probabilistic logic. In addition to relaxing
inference rules such as Updating to investigate alter-
native formulations for conditional probability, we are
also interested in shifting away from the static frame-
work of a sample space. This would move probabilistic
logic in the direction of temporal and causal logic, and
would make contact with our earlier work on basing
logic on the concept of an event space [9]. See [10].
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