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Abstract

Locally strong coherence is an helpful property for
inference models based on partial lower-upper condi-
tional probabilities. Moreover, structural constraints
are usually adopted to improve vague conclusions.
In this paper this two aspects are joint together by
proposing logical-numerical conditions that guarantee
conditional exchangeability among couples or triplets
of events.
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1 Introduction

In the work started in [10, 13] and recently fully sum-
marized in Coletti & Scozzafava’s book [16] logical-
numerical conditions that reduce the complexity of
automatized procedures based on partial lower-upper
conditional probabilities assessments have been intro-
duced. Advantages brought by these conditions relay
on a smart use of null probabilities that helps to split
a general problem of coherent extension into small
subproblems. This procedure transfers most of the
computational task from an heavy use of linear opti-
mizations to the detection of particular configurations
among the conditional events of the domain. Similar
effort has been tackled by other authors [1, 2, 3, 4],
while in [19] an approach closer to usual optimization
techniques has been presented.

The presence of favorable configurations is checked by
solvability of different logical constraints, depending
of the values of the numerical assessment.

On the other side, in the last ISIPTA contribution [5]
it was shown how a systematic introduction of struc-
tural constraints could improve vague results. Among
these structural constraints there was the judgement
of conditional exchangeability. Conditional exchange-
ability is particularly apt to express evaluations of

symmetries among a group of events conditioned to a
common context. For example, it could be adopted
whenever there is a pool of experts with similar train-
ing assessing their opinions on the same subject con-
ditioned to some possible scenario. Conditional ex-
changeability can avoid to adopt the stronger assump-
tion of conditional independence that sometimes is
not motivated by the problem.

In this paper there is the intention to merge these two
notions of locally strong coherence and conditional ex-
changeability. This is realized by characterizing the
subfamilies of the domain that, even under the judge-
ment of conditional exchangeability among their ele-
ments, can be considered separately from the rest of
the assessment.

The study is limited to subfamilies of cardinality two
or three in line with [10] where there is the same lim-
itation for the conditions that have been actually im-
plemented in a specific software.

Obviously, since conditional exchangeability is an ad-
ditional requirement, the conditions introduced here
turn out to be specializations of those already pro-
posed for general assessments.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce the basic notions of coherence
and conditional exchangeability for partial models.
In Section 3 we recall the notion of locally strong co-
herence and we introduce logical-numerical conditions
that guarantee it when a judgment of conditional ex-
changeability is given on sub-families of cardinality
2 and 3. Their practical application is shown with
a simple example. In Section 4 a short concluding
remark is given.



2 Preliminaries

2.1 Coherence

Let us briefly introduce the basic notions needed to
depict the framework where the proposal will be em-
bedded. A fully detailed and motivated description of
all the following concepts can be found in [16].

We deal with problems that can be modeled by par-
tial lower-upper conditional probability assessments.
It means that relevant entities are represented by a
finite family of conditional events F = {Ei|Hi}n

i=1

while uncertainty is expressed trough a vector of nu-
merical bounds p = ([lb1, ub1], . . . , [lbn, ubn]). Each
closed interval [lbi, ubi] represents lower and upper
bounds associated with probabilities for the corre-
sponding conditional event Ei|Hi. These are usually
estimated by expert beliefs, by literature reports or
by collected data.

The model is partial because F describes only the
really relevant and available statements, without nec-
essarily reaching to a fully detailed description as usu-
ally done by sophisticated statistical models. For this,
it is crucial to endow the model with a set of log-
ical constraints LF among the set of unconditional
events UF = {E1,H1, . . . , En,Hn}. LF models in-
compatibilities, implications, coincidences, or what-
ever, among the events in UF and it can be formalized
as a set of logical clauses that in any interpretation co-
incide with the false event (in the sequel Ω will denote
the sure event while φ the false one).

As an ancillary tool we need to introduce the set
of atoms AF generated by the UF and contained in∨n

i=1 Hi. Note that AF is not a part of the assessment
(i.e. it is not in the “input” of the model) because it is
implicitly described by UF and LF . Moreover, some-
times we will refer to it (or to some subset of it) to
describe theoretical properties even if we will not need
to actually generate it.

Elements of AF are obtained combining all situations
obtainable by F and compatible with the given logical
constraints LF , as shown in the following formula

Ar =
n∧

i=1

˜(Ei|Hi),

where ˜(Ei|Hi) can vary among EiHi, Ec
i Hi, Hc

i (here
the conjunction symbol ∧ is omitted, but it will be
used whenever the events will have an index varying
in an index-set). Be aware that the elementary event∧n

i=1 Hc
i has been excluded from AF because it lives

outside every conditioning event Hi (for a more de-
tailed motivation see [20, 24]).

The number of atoms is less or equal than 3n − 1.
In fact, because of logical relations among the events
in UF , some combinations turn out to be impossible.
The maximum number 3n − 1 is reached only when
logical constraints are of the form Ei ⊂ Hi or under
the logical independence assumption. Note that, how-
ever, the set AF grows exponentially with respect to
the given family F .

Since the assessment (F ,LF ,p) is partial, it must
obey to some consistency rule to be adopted as a rea-
sonable model. We will require (F ,LF ,p) to be co-
herent, i.e. that there exist a class PF of conditional
probability distributions1 such that p coincides with
the convex envelope of PF restricted to F , i.e. such
that

∀P ∈ PF lbi ≤ P (Ei|Hi) ≤ ubi ∀Ei|Hi ∈ F ; (1)

∀Ei|Hi ∈ F ∃P ′, P ′′ ∈ PF s.t.
P ′(Ei|Hi) = lbi

P ′′(Ei|Hi) = ubi
.(2)

Practically speaking, the numerical bounds p repre-
sent a set of numerical constraints that all the admis-
sible models (the conditional probabilities P ∈ PF )
must satisfy (inequalities (1)). Such constraints must
be tight enough so that their bounds can be actually
reached by some of the admissible models (equalities
(2)).

Note that this coherence notion is almost the same
as those usually adopted in imprecise probabilities
frameworks. That is, p coincides with its natural ex-
tension. (See [25] and [26, §3.2] property (d).)

Also PF is implicitly defined trough the assessment
and it is used only potentially to compute, for ex-
ample, any coherent extension of p to some inference
target.

The check of non-emptiness of PF , known as check
of coherence, is a compulsory step to perform with
partial models, especially whenever the information
comes from different sources. A real problem con-
nected with such a feature is reported in [6]. In fact,
contrary to what could be instinctively thought, prob-
lems of coherence can appear especially in the finite
context and not only in the continuous case.

1Conditional distributions directly defined on Cartesian
products were introduced and fully characterized with the fol-
lowing axioms by de Finetti [17] and Dubins [18]:
let E be a Boolean algebra and H an additive class, then a func-
tion P : E ×H → [0, 1] is a conditional probability distribution
if

1. ∀H ∈ H, P (·|H) : E → [0, 1] is an additive probability
distribution;

2. ∀H ∈ E ∩H, P (H|H) = 1;

3. ∀ E1, E2 ∈ E and H ∈ H s.t. E1H ∈ H, P (E1E2|H) =
P (E1|H) P (E2|E1H).



As it has been already stated in [14, 15], and in partic-
ular in [16, §15.2 ], in the finite context the existence
of PF can be checked operationally by the satisfiabil-
ity of a class of sequences of linear systems {Sj

α}, with
j = 1, . . . , 2n and α = 1, . . . , αj . Note that sequences
of linear systems are necessary to allow conditioning
events Hi’s to have induced probabilities that are not
bounded away from 0. This procedure partitions F in
different zero layers indexed by α. (For a deeper ex-
position of this aspect refer again to [16], in particular
to § 12 and § 15).

The explicit formulation of the linear systems can be
simplified by the use of characteristic vectors of the
events, i.e. vectors whose components are 1 or 0 de-
pending if the corresponding atom implies or not the
event, and we will denote them with the same letter
of the event but in boldface lower-cases. Hence, for
example, ei and hi will denote the characteristic vec-
tors of Ei and Hi, respectively, while their juxtaposi-
tion eihi will represent the characteristic vector of the
conjunction EiHi. Introducing a vector of variables
x = (x1 . . . xa), where each component xr is associ-
ated with possible values for the probability of the
atom Ar, it is possible to rebuild the possible values
of probability for any event in UF , say Ei, simply by

P (Ei) =
∑

Ar⊆Ei

P (Ar) = ei · x , (3)

where · represents the row-column matrix product.

With such a notation linear systems {Sj
α}, with j =

1, . . . , 2n and α = 1, . . . , αj , have the following com-
mon structure

(Sj
α

)





(ejhj − pj hj) · xα = 0 if hj · xα−1 = 0

(ekhk − lbk hk) · xα ≥ 0
(ekhk − ubk hk) · xα ≤ 0 if hk · xα−1 = 0

xα ≥ 0 , xα 6= 0

,

(4)
where Ej |Hj equals Ei|Hi for both subsequent odd
and even indexes j = 2i−1 and j = 2i (or, conversely
i = x j+1

2 y), k varies among all indexes different from
j, while the value pj that appears in the first equation
equals lbi for the odd indexes j = 2i − 1 and ubi for
the even ones j = 2i.

Hence, for each event Ei|Hi ∈ F there will be associ-
ated two sequences of linear systems S2i−1

α and S2i
α .

This to ensure that, according to (2), the bounds lbi

and ubi can be actually attained. Of course whenever
the bounds degenerate to a single value pi, the two
sequences coincide.

In the next sub-section we will see how to introduce
at this point the qualitative judgement of conditional

exchangeability.

2.2 Conditional exchangeability

As already mentioned, a common method of restrict-
ing the variability of the conclusions is to adopt an
assumption of stochastic independence. This is actu-
ally a powerful restriction, and is not always really
appropriate. Specifically, when information is based
on judgments made by several experts, the presumed
independence of experts is often based on the fact
that they each make their judgment without knowing
the judgments of the others. But this does not really
imply stochastic independence. Stochastic indepen-
dence of their assessments would mean that we, the
probability assessors, would not change our probabil-
ity assessment for a positive judgment by one expert
when we hear the judgment of another expert. This is
not really the case, because we explicitly regard them
all as experts. What should be modelled is the fact
that the judgments are thought to be given in similar
circumstance and, mainly, by people with the same
background. Hence, in the presence of such strong
symmetries it is more suitable to introduce some kind
of exchangeability. (For another similar situation, re-
fer to Lad and Di Bacco [22].)

In fact exchangeability reflects information of perfect
permutability among a set of events, that usually rep-
resent judgments or experiments, and it is appropriate
whenever it is relevant to consider how many instead
of which particular events hold.

More technically, exchangeability should be used
whenever it is possible to identify a sum as a suffi-
cient statistic 2 (for a detailed explanation refer to
[21, §3.9]).

In particular, whenever the assessment is mainly con-
ditional, the judgement of conditional exchangeability
could be the more suitable tool to adopt and it is
formulated as follows:

Definition 1 k events E1, . . . , Ek are regarded as ex-
changeable under a specific scenario Hl if any con-
junction of the Ei’s with the same number of affirmed
and negated events is evaluated identically when con-
ditioned upon Hl. In other words, for any fixed num-
ber s ∈ {0, . . . , k} the probabilities

P (Ei1 . . . Eis¬Eis+1 . . .¬Eik
|Hl) (5)

are assessed to be equal for any permutation of the
indexes i1, . . . , ik.

2Exchangeability is not the only property that takes into
account a sum as a relevant quantity [23] but it is the most
natural to adopt whenever there is a fully symmetric judgment
among the events.



Conditions like (5) actually reduce the “degree of free-
dom” for the unknowns in the sequences of linear sys-
tems for the check of coherence. This restricts “de
facto” the admissible class of conditional measures
PF .

Since (5) refers to a fixed conditioning event Hl, re-
striction of this type are easily reported as linear con-
straints. In fact, let us denote with πs and π′

s the
characteristic vectors of two different permutations of
the combination Ei1 . . . Eis

¬Eis+1 . . .¬Eik
and with

xα a generic vector of variables of the j-th sequence
of linear systems. Hence coherence with the further
conditional exchangeability requirement (5) follow by
adding to the constraints of the linear systems (4)
pairwise equalities of the form

(πshl − π′
shl) · xα = 0 (6)

for each pair of permutations πs and π′
s and each

s = 1, . . . , k − 1. (Note that the extreme cases s = 0
and s = k do not actually constitute any constraint,
because only one arrangement of “all 1’s” or “all 0’s”
is possible).

3 Locally strong coherence

3.1 General setting

Till now we have referred to a direct involvement of
the linear systems Sj

α. Nevertheless, Sj
0 has an ex-

ponential number of unknowns with respect to the
number of events in F . So, the large number of un-
knowns could make the problem not manageable from
a computational point of view.

However, Coletti et al. [13] showed it is possible, with
the help of zero probabilities, to make easier the pro-
cedure trying to solve “smaller systems”, and building
only some atoms. This is possible by a careful choice
of the conditioning events whose probability can be
put equal to zero.

This idea of exploiting zero probabilities has been
used [9, 10] to characterize locally strong coherence.
It was adopted such a name because the notion is
stronger than usual coherence since it forces some of
the conditional events in F to lie in the same zero
layer, moreover it involve subfamilies of F and hence
it is locally checked.

This concept, whose formal properties relay anyway
on linear constraints satisfaction, has the good aspect
to be operationally characterized by the satisfiability
of logical-numerical conditions.

In the following we report the formal definition of lo-
cally strong coherence to better understand the new

logical-numerical properties we will introduce for con-
ditional exchangeability.

Let now G be a subfamily of F , we denote by R =
F \ G the remaining elements of the domain and we
put

Hc
R =


 ∨

r: Er|Hr∈R
Hr




c

=
∧

r: Er|Hr∈R
Hc

r .

Practically speaking, Hc
R represents all the circum-

stances not involved by R. In fact, any atom in Hc
R

would falsify all the premises Hr’s of the elements of
R.

Note that, since the procedure to check the coherence
of (F ,LF ,p) is divided among the different 2n se-
quences, each one characterized by a particular equal-
ity in one of the constraints, the notion of locally
strong coherence p must be specified to any partic-
ular j-th sequence. This aspect differs from what we
have for precise assessments where the property of lo-
cally strong coherence has always a global effect. In
fact for precise assessments the following relation be-
tween locally strong coherence and global coherence
holds [9]:

Proposition 1 Let P : F −→ [0, 1] be a precise con-
ditional probability assessment locally strong coherent
on G. Then P is coherent if and only if its restriction
P|R is coherent.

For imprecise assessments locally strong coherence
can be specialized to any one of the 2n sequences so
that, whenever it subsists, the sequence can be short-
ened by deleting from the original assessment the sub-
family G. This can be formalized with the following
definition:

Definition 2 The assessment (F ,LF ,p) is partial
locally strong coherent on G ⊆ F with respect the j-
th sequence if there exists an unconditional probability
P0 such that

P0(Hr) = 0 ∀Hr ∈ HR
P0(EjHj)
P0(Hj)

= pj if Ej |Hj ∈ G (7)

lbk ≤ P0(EkHk)
P0(Hk) ≤ ubk ∀Ek|Hk ∈ G \ {Ej |Hj}.

where, again, Ej |Hj equals Ei|Hi for both subsequent
odd and even indexes j = 2i − 1 and j = 2i while pj

equals lbi for j = 2i− 1 and ubi for j = 2i.

It’s immediate to see that the checking of partial lo-
cally strong coherence on G with respect the j-th se-
quence is equivalent to check the satisfiability of the



following linear system

(
Sj
G
)





hr · x0 = 0 ∀Hr ∈ HR

(ejhj − pj hj) · x0 = 0
hj · x0 > 0

(ekhk − lbk hk) · x0 ≥ 0
(ekhk − ubk hk) · x0 ≤ 0 ∀Ek|Hk∈G\{Ej |Hj}
hk · x0 > 0

x0 ≥ 0

.

(8)
Note the equality constraint for the index j, charac-
teristic of the j-th sequence.

Expression (8) reflects the operational relevance of the
locally strong coherence. In fact system Sj

G can sub-
stitute the first element Sj

0 of the sequence, so that
the construction of the linear systems can be limited
to the constraints related to R. This can be obviously
iterated till some favorable sub-family is detected, so
that linear systems Sj

α are actually used only if the
domain cannot be reduced anymore.

Obviously, till the partial locally coherence is char-
acterized by linear systems (8) there isn’t any real
computational benefit. Anyhow, as it has been al-
ready shown in [9, 10], the use of linear systems like
(8) can be “bypassed” by testing the satisfiability of
particular configurations among the events of G rela-
tive to Hc

R. Such logical configurations are classified
with respect to the cardinality k of the sub-families G
and to the conditional probabilities bounds [lbi, ubi],
Ei|Hi ∈ G. We can now state similar conditions when-
ever we take as subfamily G = {E1|Hl, . . . , Ek|Hl} a
set of conditionally exchangeable events with cardi-
nality k = 2 or k = 3.

3.2 Logical-numerical conditions for locally
strong coherence on sub-families of
conditional exchangeable events with
cardinality 2 and 3

The additional requirement of conditional exchange-
ability among the elements of the sub-family G =
{E1|Hl, . . . , Ek|Hl} reflects on peculiar properties for
the linear systems whose solution would be guaran-
teed by favorable configurations. Note in fact that (5)
implies equiprobability among the conditional events
Ei|Hl ∈ G, while, from (7) and since in G there is a
common conditioning event Hl, it is possible to im-
pose the further constraint

hl · x0 = 1 (9)

without loss of generality.

For these reasons the numerical bounds [lbi, ubi] must
coincide for all Ei|Hl in G, the 2k sequences associated
to the elements of G reduce only to one referred to lbi

and an other to ubi, while linear systems (8) reduce
to the special form





hr · x0 = 0 ∀Hr ∈ HR

eihl · x0 − pi = 0 ∀Ei|Hl ∈ G

hl · x0 = 1

x0 ≥ 0

(10)

with respect the sequences where one of the extremes
pi = lbi or pi = ubi must be attained, or





hr · x0 = 0 ∀Hr ∈ HR

eihl · x0 − lbi ≥ 0
eihl · x0 − ubi ≤ 0 ∀Ei|Hl ∈ G

hl · x0 = 1

x0 ≥ 0

(11)

with respect to the other sequences.

The problem now is to identify logical configurations,
i.e. not impossible atoms, among the elements of G
that ensure the existence of solutions of linear systems
like (10) or like (11).

For sub-families G with cardinality k = 2 favorable
configurations can be picked out nothing that by (5)
it is possible to express the conditional probability of
any element of G at the first zero-layer α = 0 by

P0(EiHl)
P0(Hl)

=
%(1) + %(2)

%(0) + 2%(1) + %(2)
(12)

where %(0) = P0(Ec
1E

c
2HlHc

R), %(1) =
P0(E1E

c
2HlHc

R) = P0(Ec
1E2HlHc

R) and
%(2) = P0(E1E2HlHc

R). Moreover, by the nor-
malization constraint (9), it follows that it should be
possible to find not negative values for the %(·) such
that {

%(1) + %(2) = bi

%(0) + 2%(1) + %(2) = 1 (13)

where now bi can be either one of the extreme values
pi ∈ {lbi, ubi} for the sequences of applicability of (10)
or any value inside the interval [lbi, ubi] in the other
cases of applicability of (11).

Favorable configurations are the atoms associated to
the %(·) that must be strictly positive to have a solu-
tion of (13), hence they will depend on the numerical
value bi. A full classification is shown in Tab. 1 and it
generalizes the similar taxonomy reported in [11] for



precise assessments. The alternative favorable con-
figurations are explicitly reported as the atoms that
cannot be impossible and they are listed according to
ranges of values admissible for bi.

favorable configurations
bi range ——————————-

]1 ]2
0 Ec

1E
c
2HlHc

R -

(0, 1/2)
{

Ec
1E

c
2HlHc

R
E1E2HlHc

R





Ec
1E

c
2HlHc

R
Ec

1E2HlHc
R

E1E
c
2HlHc

R

1/2
{

Ec
1E

c
2HlHc

R
E1E2HlHc

R

{
Ec

1E2HlHc
R

E1E
c
2HlHc

R

(1/2, 1)
{

Ec
1E

c
2HlHc

R
E1E2HlHc

R





E1E2HlHc
R

Ec
1E2HlHc

R
E1E

c
2HlHc

R
1 E1E2HlHc

R -

Table 1: Lists of atoms that guarantee the partial lo-
cally strong coherence of G = {E1|Hl, E2|Hl} with re-
spect an appropriate sequence depending on the value of
bi ∈ {lbi, ubi} or bi ∈ [lbi, ubi].

Obviously, whenever the interval [lbi, ubi] overlaps dif-
ferent ranges of values, the existence of at least one
of the corresponding favorable conditions guarantees
the partial locally strong coherence.

Note that the configuration
{

Ec
1E

c
2HlHc

R
E1E2HlHc

R
(14)

guarantees the locally strong coherence irrespectively
of the value of bi, hence if it holds there is a global
effect so that the sub-family G can be deleted from
every j-th sequence, j = 1, . . . , 2n.

For sub-families G of cardinality k = 3, i.e. G =
{E1|Hl, E2|Hl, E3|Hl}, the reasoning is the same,
with the difference that (13) modifies in

{
%(1) + 2%(2) + %(3) = bi

%(0) + 3%(1) + 3%(2) + %(3) = 1 (15)

where now

%(0) = P0(Ec
1E

c
2E

c
3HlHc

R)
%(1) = P0(E1E

c
2E

c
3HlHc

R) =
= P0(Ec

1E2E
c
3HlHc

R) =
= P0(Ec

1E
c
2E3HlHc

R)
%(2) = P0(Ec

1E2E3HlHc
R) =

= P0(E1E
c
2E3HlHc

R) =
= P0(E1E2E

c
3HlHc

R)
%(3) = P0(E1E2E3HlHc

R) .

Due to space requirements, the full classification of
favorable configurations is reported on the two tables
Tab. 2 and Tab. 3. Once again the list of atoms that
ensure the locally strong coherence depend on which
range the value bi can varies and in Tab. 3 only ranges
that admit more than two favorable configurations
have been reported.

bi favorable configurations
——————————-

range ]1 ]2

0 Ec
1E

c
2E

c
3HlHc

R -

(0, 1/3)

{
Ec

1E
c
2E

c
3HlHc

R
E1E2E3HlHc

R





Ec
1E

c
2E

c
3HlHc

R
Ec

1E2E3HlHc
R

E1E
c
2E3HlHc

R
E1E2E

c
3HlHc

R

1/3

{
Ec

1E
c
2E

c
3HlHc

R
E1E2E3HlHc

R





Ec
1E

c
2E

c
3HlHc

R
Ec

1E2E3HlHc
R

E1E
c
2E3HlHc

R
E1E2E

c
3HlHc

R

(1/3, 2/3)

{
Ec

1E
c
2E

c
3HlHc

R
E1E2E3HlHc

R





Ec
1E

c
2E

c
3HlHc

R
Ec

1E2E3HlHc
R

E1E
c
2E3HlHc

R
E1E2E

c
3HlHc

R

2/3

{
Ec

1E
c
2E

c
3HlHc

R
E1E2E3HlHc

R





Ec
1E2E3HlHc

R
E1E

c
2E3HlHc

R
E1E2E

c
3HlHc

R

(2/3, 1)

{
Ec

1E
c
2E

c
3HlHc

R
E1E2E3HlHc

R





E1E2E3HlHc
R

Ec
1E2E3HlHc

R
E1E

c
2E3HlHc

R
E1E2E

c
3HlHc

R
1 E1E2E3HlHc

R -

Table 2: First list of configurations that guaran-
tee the partial locally strong coherence of G =
{E1|Hl, E2|Hl, E3|Hl} with respect an appropriate se-
quence depending on the value of bi ∈ {lbi, ubi} or bi ∈
[lbi, ubi].

Note that there is again a favorable configuration

{
Ec

1E
c
2E

c
3HlHc

R
E1E2E3HlHc

R
(16)

shared by all the possible ranges, hence if it is present
it has a global effect independently from the numerical
values of [lbi, ubi], while there are other two cases that
have a global effect for more specific situation, i.e.





Ec
1E

c
2E

c
3HlHc

R
Ec

1E2E3HlHc
R

E1E
c
2E3HlHc

R
E1E2E

c
3HlHc

R

(17)

guarantees the locally strong coherence of G with re-
spect every sequence whenever [lbi, ubi] ⊆ [0, 2/3],



while 



E1E2E3HlHc
R

Ec
1E

c
2E3HlHc

R
E1E

c
2E

c
3HlHc

R
Ec

1E2E
c
3HlHc

R

(18)

has a global effect whenever [lbi, ubi] ⊆ [1/3, 1].

bi favorable configurations
——————————-

range ]3 ]4

(0, 1/3)
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Table 3: Further configurations that guarantee the partial
locally strong coherence of G = {E1|Hl, E2|Hl, E3|Hl}.

Hence we have that the original expression of the
property of locally strong coherence through satisfi-
ability of linear systems (10) and (11) can be substi-
tuted with a problem favorable configurations detec-
tion. The presence or not in the model of the favorable
configurations listed before, both for the case k = 2
and k = 3, are operationally tested by checking the
logical satisfiability of them jointly with the logical
formulae that represent LF .

Let us conclude this section by showing a simple ex-
ample of application of these logical-numerical condi-
tions for the locally strong coherence. The assessment
in the example is extremely simple because it intends
just to show the applicability of the proposed pro-
cedure. A more detailed example could distract the
reader from the proposal.

Example 3.1 In [5] it was shown benefits of condi-
tional exchangeability applied to a diagnosis procedure
for asbestos induced fibrosis based on a median de-
cision criterion. In that example the numerical

assessment was made by precise conditional probabil-
ities, anyhow it was just one of different assessments
contemplated on the original work reported in [7].
If we merge all the precise evaluations in a single
lower-upper conditional probabilities assessment we
obtain the following model:

F = {D1|F, D2|F, D3|F, D∗, S∗|D∗} ;

where
label description

F asbestosis (fibrosis) presence
Di i-th expert positive asbestosis judgment

i = 1, 2, 3
D∗ positive median decision diagnosis
S∗ positive median decision with a splitting vote

while the other components of the assessment are

p =





P (Di|F ) ∈ [.82, .96] i = 1, 2, 3
P (D∗) = .12
P (S∗|D∗) = .42

;

and

LF =
{

S∗ ≡ (D1D2D
c
3) ∨ (D1D

c
2D3) ∨ (Dc

1D2D3)
D∗ ≡ S∗ ∨ (D1D2D3)

with the further judgement of the Di, i = 1, 2, 3, being
exchangeable conditionally on F .

Since on the subfamily G1 = {D∗, S∗|D∗} the numer-
ical assessment is precise, G1 can be eliminated by
F because one of the condition for the locally strong
coherence reported in [9] is satisfied. In fact, since
0 < P (D∗) = .12 < P (S∗|D∗) = .42 < 1 and





D∗ΩS∗D∗F c ≡ S∗F c 6= φ
S∗cD∗F c 6= φ

D∗cΩD∗cF c ≡ D∗cF c 6= φ
,

then condition (g1b) in [9] can be applied and the do-
main reduced to R1 = {D1|F, D2|F, D3|F}.
Now, the elements of R1 are judged conditionally ex-
changeable, and on it we have the lower-upper assess-
ment [lbi, ubi] = [.82, .96], i = 1, 2, 3.

Moreover, by the logical constraints LF it follows that
the configuration

{
D1D2D3F
Dc

1D
c
2D

c
3F

is possible. Hence, by (16), we can ignore R1, con-
cluding that the original whole assessment (F ,LF ,p)
is coherent. Note that we have obtained this result
only through the locally strong coherence without the
use of any linear system.



4 Concluding remarks

In the present contribution it was shown how to
operationally include the qualitative conditions of
conditional exchangeability in models based on par-
tial lower-upper conditional probability assessments.
Thanks to the detection of particular favorable config-
urations among the elements of the domain it is in fact
possible to reduce the use of massive linear systems.
This was limited to cases where the events judged
conditionally exchangeable are 2 or 3. Even being of
small dimensions, such cases constitute a valid base
of applicability for the methodology. Moreover these
are the same cardinalities of the configurations imple-
mented for models that profit from the generic locally
strong coherence. Hence the proposed classification
can be easily adjoint in the next future to the already
existing software engine3.
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