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Abstract

We axiomatize a model of decision under ob-
jective ambiguity described by multiple proba-
bility distributions. The decision maker forms
a subjective (non necessarily additive) belief
about the likelihood of probability distributions
and computes the average expected utility of a
given act with respect to this second order be-
lief. We show that ambiguity aversion like the
one revealed by the Ellsberg paradox requires
that second order beliefs be nonadditive. Some
properties of the model are examined.

Keywords. Imprecise probabilistic informa-
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1 Introduction

Ambiguity and ambiguity aversion have be-
come the center of attention in the last twenty
years in decision theory. This interest has
grown from the challenge levelled by the Ells-
berg paradox (Ellsberg, 1961) against Sav-
age’s Subjective Expected Utility Model (Sav-
age, 1954). The main feature of the Ellsberg
paradox is ambiguity aversion: people tend to
choose less ambiguous bets over more ambigu-
ous ones, even when under certain conditions
the ambiguous ones may be more favorable
than the unambiguous ones.

Now, ambiguity aversion may be interpreted as
a form of pessimism: when favorable and unfa-
vorable scenarios are compatible with the infor-
mation available to the decision maker, an am-
biguity averse one will always deem unfavorable
scenarios more likely than favorable ones. How-
ever, interpreting ambiguity aversion in this
way requires the existence of second order be-

liefs, i.e. beliefs over probability distributions.
In this paper, we wish to investigate the con-
ditions under which such second order beliefs
exist and how they interact with information.

The approach we take to that effect is simi-
lar to the approaches of Gajdos, Tallon, and
Vergnaud (2004) and Nehring (2002, 2001). We
assume that decision makers have preferences
on pairs (f,P), where f is a Savagean act from
the set S of states of nature to the set X of out-
comes, and P is a set of probability distribu-
tions on S. Consider for instance two Ellsberg
urns: the first contains 90 red, blue and yellow
balls, among which exactly 30 are red. The
other contains 90 red, blue and yellow balls,
among which exactly 30 are red and at least 10
are blue. Would you rather bet on red in the
first urn or bet on blue in the second urn? This
is the kind of question we assume the decision
maker is able to answer. A more mundane ex-
ample would be the following. When deciding
to design a policy, a political decision maker
can ask experts. If the policy maker is used to
work with a given expert, his or her confidence
in the estimates of the expert will be high, so
that he or she will not consider the informa-
tion provided by the expert as ambiguous. If,
on the other hand, he or she is not very much
acquainted with the expert, the information he
or she will deliver will be deemed ambiguous.
Now, if the policy maker has to choose between
a policy recommended by the known expert and
a policy recommended by the less known ex-
pert, which one should he or she choose?

The model we propose is the following: the de-
cision maker forms a subjective prior on the
multiple scenarios that are compatible with the
available probabilistic information, P. This
prior is a capacity νP , i.e. a monotonic and
normalized (non-necessarily additive) set func-



tion. Then, he or she computes the average
expected utility of a given act f , by the for-
mula:

VP(f) =
∫

P

∫
S

u(f(s)) dP (s) dνP(P ),

where the first integral is a Choquet integral
w.r.t. the capacity νP .

Our model can be viewed as dual to the model
in Klibanoff, Marinacci, and Mukerji (2003).
The criterion axiomatized in this paper is the
following:

V KKM
P (f) =

∫
P

ϕ(
∫

S

u(f(s)) dP (s)) dπP(P ),

where πP is a probability measure. Thus, just
as Yaari (1987)’s dual theory of choice under
risk is dual to expected utility in the sense
that it transforms probabilities rather than out-
comes, our model is dual to Klibanoff et al.
(2003)’s model in the sense that our ϕ is linear
and our πP is non-additive.

In our view, the model we propose has the ad-
vantage over Klibanoff et al.’s model of axiom-
atizing in a rather intuitive and simple way,
the natural idea that when a decision maker
faces an imprecise probabilistic information, he
or she forms some prior on the scenarios com-
patible with this information. This is also done
by Klibanoff et al., but they make use of the no-
tion of second order acts and of preferences over
these second order acts to generate the second
order beliefs. We object to this notion because
second order acts and preferences on them are
not primitives of the problem in a real decision
problem, they are derived constructions. Gen-
erally speaking, Klibanoff et al.’s model is a re-
construction of a more abstract decision prob-
lem that seems to us too far away from the nat-
ural syntax of a decision problem in real life.

Our approach is very much indebted in its in-
spiration by the reconsideration of the Ells-
berg paradox to be found in Chateauneuf, Co-
hen, and Jaffray (forthcoming)1. These authors
show how the Ellsberg paradox, usually spelled
out in terms of Savage acts, can be recast in the
Anscombe-Aumann framework using the com-
position of the urn as state space so that it be-
comes clear that not only Savage’s Sure Thing
Principle is violated by this paradox, but also
the Independence Axiom. Here we propose to
generalize this approach in order to connect the

1It seems however that the original idea was Schmei-
dler’s (personal communication by J.-Y. Jaffray).

Savage framework and the Anscombe-Aumann
framework. This is also done in Nehring (2002),
but in this paper the Anscombe-Aumann acts
are defined on the same state space as Savage
acts, whereas here they will be defined (in the
proof of the theorem) on a different state space.

Most importantly, in line with Chateauneuf
et al., we show that, in order to account for
the Ellsberg paradox, the prior on the scenar-
ios cannot be additive. This should pave the
way to the characterization of various behav-
iors under uncertainty thanks to the vast lit-
erature on the Choquet integral now available.
However we leave that for future research. In
this paper we explore some simple properties of
the criterion axiomatized.

The paper is organized as follows: section 2 in-
troduces the set up and the axioms, in section 3
the main theorem is stated and the main prop-
erties of the functional are studied. Section 4
concludes, while the theorem is proved in sec-
tion 5.

2 The Model

2.1 Set Up and Basic Definitions

The set of states of nature is here denoted S
and endowed with a σ-algebra Σ. The set of
outcomes is a measurable space (X, B). We de-
note by F the set of Savage acts, i.e. the set of
finite-valued Σ-measurable functions f from S
to X. Let P(S) be the set of all countably ad-
ditive probability measures on Σ. An element
P ∈ P(S) is said to be convex-ranged if for all
α ∈ [0, 1], for all A ∈ Σ, there exists B ∈ Σ
such that P (B) = αP (A). Let Pc(S) ⊆ P(S)
be the set of convex-ranged countably additive
probability measures. We denote by P0 the
set of all non-empty finite subsets P of Pc(S)
having the following separation property:
Property 1 (Separation property). For all
D ⊆ P, there exists AD ∈ Σ such that
P (AD) = 1 for all P ∈ D and P (AD) = 0
for all P /∈ D.

Following Gajdos et al. (2004), the objects of
choice in our setting will be pairs (f,P) in
F ×P0. A pair (f,P) of this sort corresponds
to a situation where the objectively given in-
formation relevant to act f is consistent with
an imprecise probabilistic representation given
by P. We assume here that preferences are ex-
pressed over the set F×P0 and are represented
by the relation %.



2.2 Axioms

We assume the following standard axiom:

Axiom 1 (Weak Order). % is transitive and
complete.

Comparisons between two acts accompanied
by different imprecise information (f,P) and
(g,P ′) may seem awkward, but it is in fact
very natural: for instance, when one makes a
deal in a country, the probability that the deal
will be enforced depends in particular on the
legal system. It is more imprecise if the de-
cision maker does not know the country well.
When one has to choose between investments
in different countries, one has therefore to com-
pare similar decisions in precisely and impre-
cisely known legal contexts, i.e. under different
ambiguous informations.

For f, g ∈ F and A ∈ Σ, the A-graft of f
with g, denoted by fAg, is the act such that
fAg(s) = f(s) if s ∈ A and fAg(s) = g(s)
if s /∈ A. For any f ∈ F and P ∈ P(S),
we let P f denote the probability measure in-
duced by f on X, i.e. for all B ∈ B,P f (B) =
P (f−1(B)). As f is finite-valued, P f has finite
support. We let ∆(X) be the set of all finitely-
supported probability measures or lotteries on
X. Then P f ∈ ∆(X).

Axiom 2 (Information-Contingent Continu-
ity). For all P ∈ P0, for all f, g, h ∈ F , if
(f,P) � (g,P) � (h,P) then there exists
A,B ∈ Σ, α, β ∈]0, 1[ such that:

(i) (fAh, P) � (g,P) � (fBh,P),

(ii) For all P ∈ P, P fAh = αP f + (1− α)Ph

and P fBh = βP f + (1− β)Ph

In order to state the next axiom, we need the
following lemma:

Lemma 1. For all P ∈ P0, for all π ∈ ∆(X),
there exists k ∈ F such that, P k = π for all
P ∈ P.

Proof. As a preliminary remark, it must be no-
ticed that, as a consequence of the Lyapunov
convexity theorem the set P is convex-ranged
in the sense of Nehring (2002), i.e. for all
α ∈ [0, 1], for all A ∈ Σ, there exists B ∈ Σ
such that P (B) = αP (A) for all P ∈ P.

Let E = {x1, ..., xn} be the support of π. The
proof will proceed by induction on the size of
E.

If n = 1, π is a degenerate measure with atom
x1. Therefore, as x1 generates π = δx1 for all
P ∈ P, we can take k = x1.

Now assume the lemma is true for n ≥ 1 and
show it therefore holds for n + 1. Take x1 ∈ E.
Because n + 1 ≥ 2, we have 0 < π(x1) < 1.
Define πx1 by:{

πx1(x) = π(x)
1−π(x1)

if x 6= x1

πx1(x1) = 0.

The size of the support of πx1 is now n. We
can therefore apply the induction hypothesis
to find an act k1 such that P k1 = πx1 for all
P ∈ P. Now, by convex rangedness of P,
it is possible to find a set A1 ∈ Σ such that
P x1A1k1 = π(x1)δx1 + (1 − π(x1))πx1 for all
P ∈ P, where x1A1k1 is the act yielding x1

on A1 and equal to k1 elsewhere. Setting k =
x1A1k1 thus completes the proof, as π(x1)δx1 +
(1− π(x1))πx1 = π.

Let

Λ(π,P) := {k ∈ F | P k = π,∀P ∈ P}.

Intuitively, acts in Λ(π,P) differ only by the
permutation of outcomes on events of equal
probability, a manipulation that amounts to re-
labelling these events. From a normative point
of view, such a relabelling should note affect
the decision maker’s preference, because this
would amount to a framing effect. This is the
intuition that motivates the next axiom:

Axiom 3 (No Framing Effect). For all π ∈
∆(X), for all P ∈ P0, for all k, k′ ∈ Λ(π,P),
(k, P) ∼ (k′,P).

In view of this axiom, we will abuse notation
and write

Λ(π,P) % Λ(π′,P)

for: there exists (and thus, for all) k ∈ Λ(π,P),
k′ ∈ Λ(π′,P), k % k′.

Definition 1. Let f, g ∈ F and P ∈ P0. We
shall say that f and g are P-comonotonic if,
for all P,Q ∈ P,

Λ(P g,P) % Λ(Qg,P)

whenever

Λ(P f ,P) � Λ(Qf ,P).

The intuition behind this definition is the fol-
lowing. Given an information set P and an



act f , one can associate to each P ∈ P a lot-
tery P f . Moreover, one can associate to f an
ordering %f on P defined by:

P %f Q ⇔ Λ(P f ,P) % Λ(Qf ,P).

This ordering answers the following question:
“were I given the choice between an act that,
conditional on my information, unambiguously
induces the lottery P f , and one that induces
the lottery Qf , which one would I choose?” If
I choose P f , this means that, given act f , I
deem the scenario corresponding to P as more
favorable than the scenario corresponding to Q.
Therefore, this ordering amounts to rank sce-
narios according to the relative favorableness
given act f . Now, two acts are P-comonotonic
as defined if, roughly speaking, they order the
scenarios in the same way. If they order scenar-
ios in the same way, they do not provide any
hedging opportunity against each other, not in
the sense of compensating bad states of nature
of one act with good states of the other, as in
usual hedging, but of compensating bad scenar-
ios with good scenarios.

Now, if two acts f and g are P-comonotonic,
i.e. do not provide any hedge against each other
with respect to the potential scenarios, and if
f is preferred to g given information P, this
means, roughly speaking, that “on average” f
performs better than g with respect to infor-
mation P, for instance if it is definitely better
with respect to good scenarios, though it might
not dominate g with respect to bad scenarios. If
h is P-comonotonic with both f and g, mixing
it in the sense of grafting with both of them will
result in two acts that bear the same relation
as f and g with respect to potential scenarios.
Therefore, their preference ranking should be
the same as that of the original acts. This nor-
matively appealing behaviour is what the next
axiom requires:

Axiom 4 (Information-Contingent
Comonotonic Independence). For all P ∈ P0,
for all f, g, h ∈ F pairwise P-comonotonic,
for all α ∈ [0, 1], for all A ∈ Σ such that, for
all P ∈ P, P fAh = αP f + (1 − α)Ph and
P gAh = αP g + (1− α)Ph,

(f,P) % (g,P) ⇔ (fAh, P) % (gAh,P).

Based on the same interpretive line, it seems
normatively compelling that if in each scenario
of P, act f yields a more desirable lottery than
act g, then act f be preferred to act g given
information P:

Axiom 5 (Information-Contingent Domi-
nance). For all f, g ∈ F , for all P ∈ P0, if

Λ(P f ,P) % Λ(P g,P), ∀P ∈ P,

then (f,P) % (g,P).

The next axiom requires only that the problem
be non-trivial.

Axiom 6 (Non-Degeneracy). For all P ∈ P0,
there exist f, g ∈ F such that (f,P) � (g,P).

The next axiom is essentially technical. It
would automatically hold whenever X is a con-
nected topological space and for each P the
preference over F given P is continuous.

Axiom 7 (Certainty Equivalent). For all P ∈
P0, for all f ∈ F , there exists xf ∈ X such
that (xf ,P) ∼ (f,P).

Constant acts in F correspond to actions that
are not state-contingent. Uncertainty is there-
fore irrelevant to them, and so is, of course,
information about this uncertainty. This is the
meaning of the next axiom. In a sense, this ax-
iom also implies that the objectively given in-
formation does not affect the decision-maker’s
confidence in the accuracy of the description of
uncertainty by the list of states in S.

Axiom 8 (Preferences under Certainty). For
all P,P ′ ∈ P0, for all x ∈ X, (x,P) ∼
(x,P ′).

3 The Representation Theorem

3.1 Statement

In order to introduce the representation theo-
rem, we recall the following definition:

Definition 2. Let Ω be a finite set. A capacity
on Ω is a function ν : 2Ω → R such that:

(i) ν(∅) = 0 and ν(Ω) = 1;

(ii) For all A ⊆ B ⊆ Ω, ν(A) ≤ ν(B).

Let ϕ : Ω → R. There exist families (Ai)i∈I ,
Ai ⊆ Ω and (xi)i∈I with xi ∈ R such that x1 ≤
x2 ≤ . . . ≤ xn and ϕ takes the value xi on the
set Ai. Then, the Choquet integral of ϕ with
respect to ν is defined by:∫

Ω

ϕ dν :=
n∑

i=1

xi[ν(∪n+1
j=i Aj)− ν(∪n+1

j=i+1Aj)],

(1)
with An+1 = ∅.



We can now state the main representation the-
orem:

Theorem 1. If % satisfies axioms 1 through
8, then, there exist a non-constant function u :
X → R and, for all P ∈ P0, a capacity νP on
P such that:

(f,P) % (g,P ′) ⇔ VP(f) ≥ VP′(g),

where

VP(f) =
∫

P

∫
S

u(f(s)) dP (s) dνP(P ) (2)

Moreover, u is defined up to an affine increas-
ing transformation and for each P, νP is
unique.

The proof of the theorem appears in section 5.

Remark 1. All axioms except axiom 7 (cer-
tainty equivalent) are also necessary, as it is
easy to show.

3.2 Interpretation and Properties of
the Representation

The theorem provides a very natural (as if) de-
scription of the decision-maker’s behavior un-
der objective ambiguity: given some imprecise
information objectively describable by a (finite)
set of probability distributions, the decision
maker forms a prior regarding the relative like-
lihood of each of the scenarios associated with
each probability distribution. This prior is not
necessarily additive (and must not be, indeed, if
the decision maker exhibits ambiguity aversion,
as we shall see below). He or she then computes
the average (in the sense of Choquet) expected
utility of the acts considered and chooses the
act with higher average expected utility. This
decision procedure is consistent with an intu-
itive account of the Ellsberg paradox whereby
ambiguity aversion is explained by the fact that
the decision maker deems the unfavorable sce-
narios as more likely than the favorable ones.

3.2.1 An Example

Consider a machine that is out of order2. The
decision maker has two possibilities: having the
machine repaired or buying a new one. Hav-
ing the machine repaired costs c while buying
a new one costs p. The revenue from using the

2For the sake of simplicity, in this example, we fo-
cus on the use of the decision rule axiomatized and do
not try to meet all the technical requirements of the
theorem.

machine is b. Two states of the world are possi-
ble: either the machine works after having been
repaired (state s), or it does not (state s′). De-
note by f the act corresponding to having the
machine repaired and g the act corresponding
to buying a new one. We have f(s) = b − c,
f(s′) = −c and g(s) = g(s′) = b − p as the
net profit from the new machine is independent
from the fact that the older one works after be-
ing repaired. We assume b > p > c > 0. In
order to repair the machine, an electronic com-
ponent is needed. This component can be of
three different types A, B or C. The probabil-
ity for the machine to be successfully repaired
is p1 if the component of type A, p2 if it is of
type B, p3 if it is of type C, with p1 < p2 < p3.
Moreover the information known about the av-
erage composition of a batch from which the
component is taken is that the proportion of
components of a given type is at most α, with
1
2 ≥ α ≥ 1

3 . This can be summarized by a set

Π = {π ∈ ∆(P) | πi ≤ α, ∀i = 1, 2, 3},

where P = {p1, p2, p3}, ∆(P) is the set of
probability distributions over P and πi is the
probability of pi. The condition πi ≤ α for all i
is readily seen to imply that 1−2α ≤ πi for all i.
Jaffray (1989) shows that this set of probabili-
ties can be represented by its lower envelope3,
the capacity ν∗ such that ν∗(pi) = 1 − 2α for
i = 1, 2, 3 and ν∗({pi, pj}) = 1 − α for i, j =
1, 2, 3, or by its upper envelope4 ν∗ defined by
ν∗(pi) = α for i = 1, 2, 3 and ν∗({pi, pj}) = 2α
for i, j = 1, 2, 3. Assuming that u(b − c) = 2,
u(b − p) = 1 and u(−c) = 0, using the func-
tional axiomatized in the theorem first with ν∗
and second with ν∗ yields the following values
for f :

V∗(f) = 2(αp1 + αp2 + (1− 2α)p3),

V ∗(f) = 2((1− 2α)p1 + αp2 + αp3)

and V∗(g) = V ∗(g) = 1. Therefore, when he or
she uses ν∗ the decision maker must have the
machine repaired if and only if

αp1 + αp2 + (1− 2α)p3 ≥
1
2

and when he or she uses ν∗:

(1− 2α)p1 + αp2 + αp3 ≥
1
2
.

In words, in both cases some weighted aver-
age of the probabilities of success must exceed

3In the sense that Π = {π ∈ ∆(P) | π ≥ ν∗}.
4In the sense that Π = {π ∈ ∆(P) | π ≤ ν∗}.



1/2. The level of α can be seen as a measure of
the imprecision of information concerning the
proportion of components of a given type: the
higher α, the higher the imprecision. Now im-
precision of information can be seen alterna-
tively as leaving room for a high probability of
ending with a good component or with a bad
one. Therefore, according to whether one sees
the glass half-full of half-empty, imprecision can
be seen as good or bad. The case of ν∗ corre-
sponds to the ”half-empty” point of view: the
higher α, the more demanding the rule is, as
this gives more weight to the bad cases, requir-
ing the lowest probability of success to be still
rather good. On the contrary, the use of ν∗

corresponds to the ”half-full” point of view, as
when imprecision increases it becomes a less
strict decision rule, only asking for the highest
probability of success to be high.

3.2.2 Subjective Beliefs and Objective
Information

The theorem yields a characterization of the de-
cision rule used by the decision maker’s which
involves second-order beliefs, i.e. beliefs over
probabilistic scenarios. However, it says noth-
ing about his or her beliefs about states of the
world, and in particular about the relationship
between these beliefs and the objective infor-
mation. The following proposition addresses
this issue.
Proposition 1. Let % satisfy all the conditions
of the theorem. Then, for each P, there exists
a unique capacity ρP : Σ → [0, 1] such that, for
all A ∈ Σ, for all x, y ∈ X such that (x,P) �
(y, P)

VP(xAy) = ρP(A)u(x) + (1− ρP(A))u(y).
(3)

Morevover, ρP is defined for all A ∈ Σ by

ρP(A) =
∫

P

P (A) dνP(P ) (4)

and satisfies the following properties:

(i) For all A,B ∈ Σ,

(∀P ∈ P, P (A) ≥ P (B)) ⇒ ρP(A) ≥ ρP(B).

(ii) For all A,B ∈ Σ, such that A ∩ B = ∅,
if, for all P,Q ∈ P, P (A) > Q(A) ⇒
P (B) ≥ Q(B), then ρP(A∪B) = ρP(A)+
ρP(B).

Proof. This proposition is a straightforward
consequence of the properties of the Choquet

integral: positive homogeneity, comonotonic
additivity and monotonicity. Details are left
to the reader.

This proposition shows first that the prefer-
ences axiomatized in this paper belong to the
biseparable class studied by Ghirardato and
Marinacci (2001). Following their terminology,
the capacity ρP may be interpreted as the de-
cision maker’s willingness to bet, i.e. the num-
ber of euros he or she is willing to pay for a bet
yielding one euro if event A obtains and noth-
ing otherwise. If one is willing to define the fact
that A is deemed more likely than B if betting
on A is preferred to betting on B, then ρP can
be said to represent beliefs given information
P. However, as pointed out by Nehring (1994),
in the context of ambiguity, this definition is
somewhat arbitrary: one could also define be-
lief by the fact that betting on the complement
of B is preferred to betting on the complement
of A, and, in the context of ambiguous infor-
mation these notions would not be equivalent.
Indeed, the second notion would be numerically
represented by ρP ’s dual capacity ρ̄P defined
by ρ̄P(A) = 1− ρP(Ac), which does not yield
the same ordering on Σ.

This being said, it is noteworthy that willing-
ness to bet is here defined from the available
information as an aggregation of this informa-
tion that satisfies a unanimity property: if in
all probabilistic scenarios A is more likely than
B, i.e. if A is unambiguously more likely than
B, then the decision maker will be more willing
to bet on A than to bet on B. This is property
(i), a rationality property. Property (ii) says,
in turn, that if the scenarios in which disjoint
events A and B are not very likely to obtain
are the same, then the willingness to bet on
the join of these events is the sum of the will-
ingness to bet on each of them. This reflects
the fact that in some sense there is no interac-
tion between them, which would appear as an
additional term in the sum.

3.2.3 Ambiguity Aversion

An important consequence of this proposition
is that, if νP is additive, then so is ρP . But
this is incompatible with the Ellsberg paradox,
as it is well known. Therefore, in order to be
descriptively accurate and to account for ambi-
guity aversion, νP must not be additive.

What is however the natural definition of am-
biguity aversion in our setting? In order to an-



swer this question, we introduce, for all P ∈
P0 the notion of P-unambiguous acts:

Definition 3. For all P ∈ P0, f ∈ F is a
P-unambiguous act if P f = Qf ,∀P,Q ∈ P.

Notice that a P-unambiguous act is P-
comonotonic to any act in F . Let UP be the
set of P-unambiguous acts. We can now give
the following definition of comparative uncer-
tainty aversion given information P.

Definition 4. Let %1 and %2 be the preference
relations of two decision makers. Then decision
maker 1 is more ambiguity averse than decision
maker 2 given information P if and only if, for
all k ∈ UP , for all f ∈ F :

(f,P) %1 (k,P) ⇒ (f,P) %2 (k,P)

This definition of ambiguity aversion is similar
to the one in Ghirardato and Marinacci (2002),
and it is most natural. The following proposi-
tion is an immediate consequence of the results
of this paper.

Proposition 2. Let %1 and %2 be the pref-
erence relations of two decision makers satisfy-
ing the axioms of the theorem. Then if decision
maker 1 is more ambiguity averse than decision
maker 2 given information P, then ρP

2 ≥ ρP
1 .

Proof. Fix P ∈ P0. Notice first that our de-
finition of comparative ambiguity aversion is
equivalent to the definition in Ghirardato and
Marinacci (2002) when translated to the set
of Anscombe-Aumann acts FAA introduced
in the proof of the main theorem (section 5).
Therefore, if decision maker 1 is more ambigu-
ity averse than decision maker 2 given informa-
tion P, they have same utility function UP ,
therefore same utility function u.

Now, clearly, as any constant z ∈ X is an ele-
ment of UP , if decision maker 1 is more ambi-
guity averse than decision maker 2 given infor-
mation P, then, for all x, y, z ∈ X such that
x � y, for all A ∈ Σ, xAy %1 z ⇒ xAy %2 z.
In particular, let x, y be such that u(x) = 1 and
u(y) = 0 and let z be a certainty equivalent of
xAy given P. Then, ρP

1 (A) = VP,1(xAy) =
u(z) ≤ VP,2(xAy) = ρP

2 (A).

This shows, as in Ghirardato and Marinacci
(2002), that a decision maker that is less am-
biguity averse than another one is always more
willing to bet, always more confident, always
less pessimistic.

Now, we have analyzed the behavior of a
decision-maker given a fixed information. How
will changing information affect his behavior?
One can assume that decision makers usually
prefer having precise information. Therefore,
we define, in the spirit of Gajdos et al. (2004),
aversion to imprecision, though in a cruder
way:
Definition 5. A decision maker is averse to
imprecision if, for all P,P ′ ∈ P0,

P ⊆ P ′ ⇒ (f,P) % (f,P ′), ∀f ∈ F .

An obvious consequence of this definition is the
following:
Proposition 3. If a decision maker satisfy-
ing the axioms of the representation theorem is
averse to imprecision, then ρP ≥ ρP′

when-
ever P ⊆ P ′.

Proof. Take f = xAy.

When information is more precise, one is surer
of the likelihood of events. Therefore, one is
more likely to bet on them, one will pay more
for a given bet. This is the import of this propo-
sition.

4 Conclusion

We have axiomatized in what seems to us a
rather simple way a model of decision mak-
ing under ambiguous objective information or
imprecise risk where the decision maker max-
imizes the average expected utility of a given
act with respect to some second order belief
over beliefs.

Several paths are open for future research. The
first and in our opinion most important one is
to characterize the case where our model re-
duces to Choquet Expected Utility with respect
to the willingness to bet ρP . This is of course
the case when ρP is additive for all P, but
is it possible to generalize this? This will open
the possibility to characterize in the Savage set-
ting Choquet Expected Utility and other re-
lated models that have simple axiomatizations
in the Anscombe Aumann setting in a simpler
way than what is generally to be found in the
literature. Second, it would be interesting to
further explore the consequences of imposing
some classical properties on the capacity νP ,
linked in particular to the separation property.
Thirdly, we have given only a one way char-
acterization of ambiguity aversion and aversion



to imprecision. Some technical problems arise
that we will have to address. Finally, one would
like to use the model proposed here to describe
the way the decision maker behaves when he
or she faces new information, i.e. how second
order-beliefs are updated in a dynamical model.
This is left for further research.

5 Proof of the Representation
Theorem

The proof proceeds in several steps.

• Step 1 Fix P ∈ P0. Given f ∈ F , one
can canonically associate a function:

F f
P :P → ∆(X)

P 7→ P f .

This function will be call the Anscombe-
Aumann or AA-act generated by f under
information P. Let

FAA
P := {F ∈ ∆(X)P | ∃f ∈ F , F = F f

P}

be the set of all AA-act generated by F
under information P. For convenience
and when no confusion might arise, we
shall drop the subscript P and write only
F f and FAA.

• Step 2 By axioms 3 and 5, if F f = F g,
then f ∼ g. Therefore, one can define a
preference relation %P

AA on FAA by set-
ting:

F f %P
AA F g ⇔ (f,P) % (g,P).

Here again, we shall drop P when no con-
fusion should arise.

By convex-rangedness of P, for any f, g ∈
F and any α ∈ [0, 1] there exists A ∈ Σ
such that, for all P ∈ P,

P fAg = αP f + (1− α)P g.

Therefore, the set FAA is convex. We wish
to show that preference %AA on FAA sat-
isfies all the axioms of the Choquet Ex-
pected Utility model of Schmeidler (1989).
Clearly %AA is a weak order because % is
by axiom 1. We shall enumerate the other
axioms as lemmas.

Lemma 2 (Continuity). For all
F f , F g, Fh ∈ FAA, if F f �AA F g �AA

Fh, then there exists α, β ∈]0, 1[ such
that:

αF f + (1− α)Fh �AA F g

and

F g �AA βF f + (1− β)Fh.

Proof. This follows automatically from ax-
iom 2.

The following remark will be useful:

Remark 2. Identifying constant AA-acts
in FAA and elements of ∆(X), one can
consider the restriction to ∆(X) of the
relation %P

AA. Notice that, by lemma 1,
all constant AA-acts belong to FAA. Be-
cause, for π ∈ ∆(X), we have FΛ(π,P) =
π, for all π, π′ ∈ ∆(X), we have, as a
matter of fact:

π %AA π′ ⇔ Λ(π,P) % Λ(π′,P).

Now, we say that two AA-acts F f and F g

are comonotonic if and only, for all P,Q ∈
P:

F f (P ) �AA F f (Q) ⇒ F g(P ) %AA F g(Q).

This formula is equivalent to:

P f �AA Qf ⇒ P g %AA Qg,

i.e., by the previous remark, to:

Λ(P g,P) % Λ(Qg,P)

whenever

Λ(P f ,P) � Λ(Qf ,P)

Hence, two AA-acts F f and F g are
comonotonic if and only f, g are P-
comonotonic. This allows us to state the
following lemma:

Lemma 3 (Comonotonic Independence).
For all F f , F g, Fh ∈ FAA pairwise
comonotonic and for all α ∈ [0, 1]:

F f %AA F g

if and only if

αF f + (1− α)Fh %AA αF g + (1− α)Fh.

Proof. This follows from the previous re-
marks, from axiom 4 and from the fact
that, by convex-rangedness of P, there ex-
ists A ∈ Σ such that F fAh = αF f + (1 −
α)Fh and F gAh = αF g + (1− α)Fh.



The next lemma is a direct consequence of
the previous remark and of axiom 5:

Lemma 4 (Dominance). For all F f , F g ∈
FAA, if F f (P ) %AA F g(P ) for all P ∈
P, then F f %AA F g.

The final lemma of this step of the proof
follows from axiom 6:

Lemma 5 (non-triviality). There exists
F f , F g ∈ FAA, such that F f �AA F g.

• Step 3 We will now proceed to construct
the objects of the theorem. First, we know
that, because %AA is a weak order, because
of lemmas 2,3 and 5 and because all con-
stant AA-acts are pairwise comonotonic
and belong to FAA, restricting %AA to
constant acts allows to show that there ex-
ists an affine non-constant function UP :
∆(X) → R, unique up to an increasing
affine transformation, such that, for all
π, π′ ∈ ∆(X):

π %P
AA π′ ⇔ UP(π) ≥ UP(π′).

Choose some x0 ∈ X and normalize UP so
that UP(x0) = 0. Now let

B0(P,F )

denote the set

{UP ◦ F f | f ∈ F}.

This set is a convex subset, containing 0, of
the vector space B0(P) of all finite valued
functions from P to R. Because of lemma
4, it is possible to define a relation %∗ on
B0(P,F ) setting

UP ◦ F f %∗ UP ◦ F g ⇔ F f %P
AA F g.

Now, enumerate P = {P1, . . . , Pn}. Let
Sn be the set of permutations of P. For
all σ ∈ Sn, let Bσ

0 (P,F ) denote the set
of all functions ϕ ∈ B0(P,F ) such that

ϕ(Pσ(1)) %∗ ϕ(Pσ(2)) %∗ . . . %∗ ϕ(Pσ(n)).

This set is convex and contains all
the constants in B0(P,F ), and the
sets {Bσ

0 (P,F )}σ∈Sn
are the maximal

comonotonicity sets in B0(P,F ), i.e.
they are the maximal subsets having the
property that, for any σ ∈ Sn, for any two
acts F f and F g belonging to Bσ

0 (P,F ),
F f and F g are comonotonic.

Because of lemma 3, the restriction of %∗

to any of these subsets satisfies indepen-
dence, and, therefore, by lemma 2 and by
the mixture space theorem, there exists a
monotonic (by lemma 4) linear functional

Iσ : Bσ
0 (P,F ) → R

representing %∗ on Bσ
0 (P,F ). This

functional can be uniquely extended to
a monotonic linear functional Jσ defined
on the vector space Bσ

0 (P) spanned by
Bσ

0 (P,F ). By monotonicity and non-
degeneracy, there exists therefore a unique
probability µσ on P such that

Jσ(ϕ) =
∫

P

ϕ dµσ

for all ϕ ∈ Bσ
0 (P). Because each ϕ in

Bσ
0 (P,F ) is bounded as it is finite valued,

and because of continuity (lemma 2), it has
a certainty equivalent. Therefore, because
the constants (elements of UP(∆(X))) all
lie in ∩σ∈Sn

Bσ
0 (P,F ), we have, for all

ϕ ∈ Bσ
0 (P,F ) ,ϕ′ ∈ Bσ′

0 (P,F ) :

ϕ %∗ ϕ′

if and only if∫
P

ϕ dµσ ≥
∫

P

ϕ′ dµσ′
.

Now, let D ⊆ P and let 1D be the indica-
tor function of D. By the separation prop-
erty, 1D ∈ B0(P,F ). Indeed, if we take
x, y ∈ X such that U(x) = 1 and U(y) = 0,
and if we set f = xADy, where AD is
such that P (AD) = 1 for all P ∈ D and
P (AD) = 0 for all P /∈ D, then P f = δx

for all P ∈ D and P f = δy for all P /∈ D.
Therefore U ◦ F f = 1D.

If

1D ∈ Bσ
0 (P,F ) ∩Bσ′

0 (P,F ),

then
µσ(D) = µσ′

(D).

We can therefore define the capacity νP

by:
νP(D) = µσ(D)

for all D ⊆ P and for any σ ∈ Sn

such that 1D ∈ Bσ
0 (P,F ). Notice that,

as B0(P,F ) = ∪σ∈SnBσ
0 (P,F ), by the

separation property for each D ⊆ P, there
exists σ ∈ Sn such that 1D ∈ Bσ

0 (P,F ),



so νP is defined everywhere. It is easy
to verify that, for any ϕ ∈ B0(P,F ), we
have I(ϕ) =

∫
P ϕ dνP .

Summarizing the results of this step of the
proof, we have that, for any f, g ∈ F ,

f % g ⇔ VP(f) ≥ VP(g),

where

VP(f) =
∫

P

UP(P f ) dνP(P ).

• Step 4 Let uP : X → R be defined
by uP(x) = UP(δx). By axiom 8, for
all x, y ∈ X, for all P,P ′ ∈ P0,
(x,P) % (y, P) if and only if (x, P ′) %
(y, P ′). But this is clearly equivalent
to (δx,P) %P

AA (δy,P) if and only if
(δx,P ′) %P′

AA (δy,P ′). Therefore, uP and
uP′ represent the same ordering on X, so
we can normalize them so that uP = u
for all P. Let (f,P) and (g,P ′) be two
act-information pairs. Let xf ∈ X be the
P-certainty equivalent of f and xg ∈ X
be the P ′-certainty equivalent of g, i.e.
(f,P) ∼ (xf ,P) and (g,P ′) ∼ (xg,P ′).
They exist by axiom 7. We have:

(f,P) % (g,P ′) ⇔ (xf ,P) % (xg,P
′)

⇔ u(xf ) ≥ u(xg).

But, on the other hand,

u(xf ) = VP(f)

=
∫

P

UP(P f ) dνP(P )

=
∫

P

∫
X

u dP f dνP(P )

=
∫

P

∫
S

u ◦ f dP dνP(P )

because UP is affine, and the same holds
for g, and this completes the proof.
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de l’utilité à l’incertain régulier. Operations
Research/ Recherche Opérationnelle, 23(3):
237–267, 1989.

Peter Klibanoff, Massimo Marinacci, and Sujoy
Mukerji. A smooth model of decision mak-
ing under ambiguity. Working Paper 11/03,
ICER, 2003.

Klaus Nehring. Imprecise probabilistic beliefs.
mimeo, November 2002.

Klaus Nehring. Ambiguity in the context of
probabilistic beliefs. mimeo, November 2001.

Klaus Nehring. On the interpretation of Sarin
and Wakker’s ‘A simple axiomatization of
nonadditive expected utility’. Econometrica,
62(4):935–38, 1994.

Leonard J. Savage. The Foundations of Statis-
tics. Wiley, New York, 1954.

David Schmeidler. Subjective probability and
expected utility without additivity. Econo-
metrica, 57:571– 587, 1989.

M.E Yaari. The dual theory of choice under
risk. Econometrica, 55:95–115, 1987.


