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Abstract

In this paper we present a new score to determine
when two categorical variables are independent. It
represents a measure that can be used in classifica-
tion. It is an interval-valued score that is based on
the Heckerman, Geiger, and Chickering’s score. We
also carry out an empirical comparison with different
scores to determine when two binary variables are in-
dependent. The others measures that have been con-
sidered are: the Bayesian score metric, the Bayesian
information criterion (BIC), the p-value of the Chi-
square test for independence and the upper entropy
score based on imprecise probabilities. For the new
score, we find a behaviour that it is more similar to
statistical tests from small samples and to Bayesian
procedures for large samples. This makes it very ap-
propriate for some concrete types of problems.

Keywords. Independence, statistical tests, Bayesian
score, Chi-square test, imprecise Dirichlet model.

1 Introduction

When we have a sample and we want to induce a
model from it, one of the main problems is to de-
cide about its complexity. In probabilistic models,
the main criterion to determine the final complexity
is based on the independence relationships that can be
obtained from the sample. Unfortunately, there is not
a single criterion to be used when considering whether
an independence relationship is supported by the data
and none of the existing ones can be considered as
superior to the others. All are based on some basic
methodology and some additional assumptions or ap-
proximations. In this way, we have methods based
on frequentist statistical tests of independence [15],
on Bayesian scores [5], on the minimum description
length principle [14], or on the theory of imprecise
probabilities [11]. The quality of a measure will de-
pend on the appropriateness of the assumptions, the
error of the approximations, or the generic principle
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on which it is based, and these aspects are, in general,
difficult to assess in a concrete application.

In a previous paper [11] we carried out an empirical
evaluation of the different criteria, showing that none
of them is superior to the others in any circumstance.
Though the Bayesian scores showed a good perfor-
mance, in general, their behaviour is not satisfactory.
Their main problem is that they can decide for de-
pendence when the variables are independent from a
sample of very small size. When applied to learn-
ing Bayesian networks, we can obtain links that are
not supported by the data. As an example, we have
considered a Bayesian network with 12 binary inde-
pendent variables. The marginal distribution for all
of them is 0.5 of probability for each one of its values.
From it, we have obtained by simulation a sample of
size 4, and then we have learned a Bayesian network
from that sample using the standard K2 algorithm
[5]. The result is in Figure 1. We can see a graph
with a complex structure and this has been estimated
from a very small sample coming from independent
variables.
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Figure 1: Network learned with a Bayesian score and
a sample of size 4 from 12 independent variables.

This problem is not shared by Chi-square indepen-
dent tests, as for small samples they have a tendency



to decide for independence. In fact when using PC
learning algorithm [15], which is based on indepen-
dence tests, we obtain a completely unconnected net-
work from the same sample. But Chi-square tests
show another characteristic which is not satisfactory
from our point of view: with large samples they keep
constant the error of deciding for dependence when
there is independence. But, due to the sample size
this error could be decreased without a great increase
in the other error (assuming independence when there
is dependence).

Independence can be studied for different aims: to
know about the existence of a relation between two
variables or as a previous step to estimate the joint
probability distribution (if there is independence this
distribution is obtained by estimating the marginal
distributions and then taking the product). Also the
study of independence could be used as a previous
step in classification, for example, if we are building
a classification tree [2], we can determine a variable
for branching between those that are dependent of
the class variable. This paper mainly concentrates
in determining the existence of independence, but in
the experiments we will give some results relative to
the classification problem. There is another related
problem which is the measurement of the degree of
dependence between two categorical variables [6], to
which the imprecise Dirichlet model has been applied
[3, 4]. Deciding about independence and measuring
the association between two variables are related is-
sues: in most of the cases, the decision is made taken
into account a measurement of the dependence degree
of the variables, called a dependence score. However,
in the paper this score will be always auxiliary to the
main aim: determine the existence of independence.

The dependence problem is well known in the Statis-
tical literature [6], and several association measures
have been proposed and statistical tests have been
designed taking them as basis. However, in this pa-
per we have concentrated in the procedures that have
been used in the task of learning Bayesian networks
[12] and some new procedures that we have proposed
and that are based on the imprecise Dirichlet model.

In this paper we introduce a new imprecise score mea-
sure which has its starting point in the Heckerman,
Geiger, and Chickering’s score [7], but considering an
imprecise prior Dirichlet model instead of a precise
one [17]. In this way we obtain three possible sit-
uations: dependence dominates, independence dom-
inates, or none of them dominates the other. If we
decide for independence in all the situations except
when dependence dominates, then the behaviour we
obtain is intermediate between Chi-square tests (sim-
ilar to it for small samples) and the Bayesian scores

(similar to it for large samples).

In this paper we have carried out a set of experiments
to determine the characteristics of the different meth-
ods to decide for independence. The setting is very
simple: two binary categorical variables and we have
to decide whether they are dependent or independent.
More complex scenarios are necessary (more than two
values, conditional independence with more variables)
but, at this stage we only want to discover the most
basic behaviour of the procedures and then we have
tried to avoid other factors affecting it.

We have compared different classical scores, a score
based on imprecise probability proposed in Abelldn
and Moral [2], a Bayesian score with a prior probabil-
ity favouring independence, and the imprecise Dirich-
let score introduced in this paper.

Though the experiments are with binary variables,
our future objective is more important. Our final aim
is to determine a general procedure to determine the
complexity of a model relating a set of variables, as
for example a dependence graph [12] or a classifica-
tion tree [13]. This construction will be based on the
verification of conditional independence relationships
between the problem variables, which can have more
than two values. So will consider methods that are
suitable for being generalized to general categorical
variables and to conditional independence relation-
ships. This is a reason for not considering Fisher exact
test [6].

The paper is organized as follows: in Section 2, we
consider the basic notation and give the basic proce-
dures to decide about independence. In Section 3, we
introduce the new interval-valued score. In Section 4,
we describe the experiments in detail and the results
obtained. The discussion of the results is in Section
5, while Section 6 is devoted to the conclusions and
future work.

2 Score Measures

Let X and Y be two variables taking values on set
{0,1}. We assume that there is a probability dis-
tribution, p, with which these variables take jointly
their values and that px and py are its marginal dis-
tributions. We also have a sample of pairs of val-
ues (21,¥1),---, (zn,yn) of independent cases, all of
which follow distribution p. N is the sample size.
The basic problem is to determine from the sample
whether there is independence in distribution p. An-
other important related problem is to obtain an esti-
mation of the joint probability distribution.

To fix the notation, let n(i,j) be the number of oc-
currences of the pair (¢,7) in the sample, and nx(7)



(ny (j)) the number of times that X = i (Y = j)
in the sample. Let us consider that p is the maxi-
mum likelihood estimation of the distribution (5(i, 7)
is n(4, j) divided by N). Analogously, px and py are
the maximum likelihood estimators of the marginal
distributions.

All the procedure to decide about dependence are
based on a score of the degree of dependence. The
first measure of dependence (CHI) that we are going
to consider is the p-value of the Chi-square test for
independence. This measure is based on considering
the estimated mutual information in the sample:

e pli, J)
G =Y p(i,j)log (m)

i,J

It is known that, under the independence hypothe-
sis, 2NG asymptotically follows a Chi-square distri-
bution with one degree of freedom (as the variables
are binary). The p-value is the probability that a Chi-
square distribution with 1 degree of freedom is greater
than or equal to 2NG. Our first score of dependence,
CHI, will be 1 minus this p-value. It is a number
between 0 and 1. Values very close to 1 imply a high
level of dependence between the variables. To decide
about dependence or independence, we need a signif-
icance level a. If 1 — CHI < «a, then we assume that
there is independence. The value of « is the proba-
bility of the error of deciding dependence when there
is independence.

This measure is well justified from classical frequen-
tist statistical theory. It is simple to compute, but it
has some drawbacks. The first one is that it is diffi-
cult to extend it to a general measure to test a set of
independence relationships when we have more than
two variables, and therefore there is not an obvious
way of obtaining a global score for a general Bayesian
network. We could think of considering something as
1 minus the p-value of a Chi-square test in which the
null hypothesis is that a set of independence relation-
ships is given, but then this measure will be larger if
we have less independence relationships and we will
not be penalizing the complexity of the model.

The second measure is based on the K2 score for
Bayesian networks [5]. To score independence, it con-
siders the probability distributions px and py and
then it assumes that there is independence between
X and Y and that the parameters of these distri-
butions (px (0),px (1)) and (py(0),py (1)) follow two
independent Beta distribution with parameters (1,1)
[12]. Then the probability of the sample given these
hypotheses is computed being equal to:

I'(2 I i)+1
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where I'(z) is the gamma function (I'(n) = (n — 1)!
when applied to an integer as in this case). This value
is obtained by integrating the likelihood function with
respect to the prior probability for the parameters and
it is also called the marginal likelihood [12].

consider
distri-

To score the dependence case, we

that the parameters for the marginal
bution (px(0),px(1)) and conditional distri-
butions: (py(0|lX = 0),py(1JX = 0)) and
(py(0|X = 1),py(1]X = 1)) follow three inde-
pendent prior Beta densities with parameters (1,1),
then the probability of the sample can be obtained as

(2 T'(nx (i)+1
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K2D is also computed by integrating the likelihood
with respect to the prior distribution of the parame-
ters.

The final score is K2 = K2D/K2I. The decision rule
for dependence is that K2 > 1.

This score only considers the probability of the data
(the sample) given each one of the two possible hy-
potheses. But, it can be seen as a Bayesian pro-
cedure in which we use the posterior probabilities
of dependence-independence given the data, under a
prior probability of 0.5 for both of them, as in this
case K2I and K2D are proportional to the posterior
probability of independence and dependence, given
the data.

This measure can be used to score general Bayesian
networks, as in fact it is a specialization of the K2
measure proposed by Cooper and Herskovits [5]. One
of the main criticism to this rule is that its value can
depend on the order of the variables. This is due to
the fact that if we change the order of the variables
the assumptions about the prior distributions of the
parameters are not consistent. To avoid this problem,
Heckerman, Geiger, and Chickering [7] proposed the
so called Bayesian Dirichlet equivalent scores. The
main question is about the parameters of the Dirich-
let prior densities (Beta densities in our case as the
variables have two possible values). Simple examples
of these measures to score Bayesian networks can be
obtained by assuming a global parameters S and then
to assume that each conditional density has param-
eters that are equal to S divided by the product of



the number of cases of the variable and the number of
configurations of parents variables. In our case with
two binary variables, for a value of the parameter S,
we obtain the following scores for independence and
dependence:

(s r )+S/2
BSI = F(]\(H-)S) (Hz’ (mr(((g/j;)/ ))
NG} T N+S/2
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The value BSD/BSI is the measure of the degree of
dependence. If it is greater than 1 we will consider
than X and Y are dependent. In our experiments,
we will consider three scores BS0.02, BS2 and BS16
corresponding to values of S = 0.02,S =2 and S =
16, respectively.

Another important principle that has been used to
determine the complexity of a model is the minimum
description length principle [14]. This has been ap-
plied to score general probabilistic models [16] giving
rise to the so called Bayesian information criterion. It
has two components, one measures the fitting of the
model to the data and the other penalizes the com-
plexity of the model. In our particular case, we can
obtain a measure by considering the difference of the
score of the full model and the score of the model with
independence. The final expression is:

—(1/2)1og(N)

This model can be also obtained as a Bayesian cri-
terion by selecting some particular prior distribution
[10].

In [11] it has been introduced a score based on the
theory of imprecise probability [17] and more con-
cretely on the imprecise Dirichlet model. This model
is used to compute the probabilities of a categori-
cal probability distribution for Z taking values on set
{z1,...,2r}. If we have a sample of size N, and we
want to know p(z;), then it is assumed that the pa-
rameters (p(z1),...,p(zk)) follow an imprecise Dirich-
let model with parameter (equivalent sample size) S.
With this, we assume as prior information the com-
plete set of Dirichlet distributions with parameters
(ai,...,ar) where a; > 0,) . a; = S. The expecta-
tion of p(z;) is a probability interval which is obtained
by computing all the posterior expected values of the

parameters given all the prior probability distribu-
tions. If n(¢) is the number of cases for which Z = z;
in the sample, then the interval for p(z;) will be equal
to:

n(i) n@)+S
N+S N+S

In our case, we will use a value of S = 1. Reasons
for it are given in [18], but any other positive values
is also possible. One important thing is that intervals
are wider if the sample size is smaller. So this method
produces more precise intervals as IV increases.

The entropy of this set of intervals will be measured
as the maximum of the entropy of all probability dis-
tributions (g(z1), - --,q(2x)) verifying that for any z;,
q(z;) belongs to the estimated interval for p(z;). This
entropy is simple to compute. First, we have to de-
termine A = {z; n(j) = min;{n(i)}}. If I is
the number of elements of A, then the distribution
with maximum entropy is p*, where p*(z;) = 1(;529
if z; ¢ A and p*(z;) = %ig/l if z; € A. This up-
per entropy value, denoted as H*(Z), is an informa-
tion/uncertainty measure. A justification for its use
in general credal sets can be found in [1, 2]. As the
intervals are wider with smaller sample sizes, then
we will have a tendency to obtain greater values of
maximum entropy with smaller sample sizes. It also
increases with the number of possible values of vari-
able Z (higher increasing of entropy with respect to
the traditional point estimation) especially with very
small samples as then 1/(N +1) of probability will be
uniformly distributed between several cases.

If to determine the values of Z we only consider the
part of the sample for which another variable, U takes
a value u, then the value of upper entropy will be
denoted by H*(Z|U = u).

The basic intuition of the score is to consider the two
cases: independence and dependence. In the case
of independence we apply the imprecise probability
model to X and Y obtaining the entropy of the global
model as IPI = H*(X) + H*(Y). In the case of de-
pendence of Y from X, we apply the imprecise prob-
ability model to X and to each one of the conditional
probabilities about Y, given X = 0 and given X = 1.
In this stage we could compute the upper entropy of
all the distributions that can be obtained by com-
posing! the sets of distributions obtained in this way.
However, this poses a non simple computational prob-
lem (at least for the general case of more than two
variables) and we have considered as upper entropy
of the dependence case the value:

1The composition is the usual multiplication of marginal
and conditional probability distributions.



IPD = H*(X) + Y_p(i).H*(Y|X =)

Finally the imprecise probability score is the upper
entropy of independence minus the upper entropy
of dependence: IMP = IPI —IDP = H*(Y) —
> p(0).H*(Y|X = i). We decide for dependence if
IMP > 0 and for independence in other case. This
score, resembles the mutual information degree of de-
pendence, but it can be lower than 0. The basic idea
is to measure the uncertainty under dependence and
independence and then to chose the situation with
lower uncertainty.

This measure can be extended to score general
Bayesian networks. However, it is not symmetrical
in the variables. The final value of IM P depends of
the order of the variables. This is due to the fact
that assuming a global imprecise Dirichlet model for
X and for all the conditional distributions of Y given
X is not equivalent to assume it for Y and for the
conditional distributions of X given Y.

3 The New Imprecise Score Measure

The new score is based on Bayesian equivalent score
and the imprecise Dirichlet model. Instead of equidis-
tributing the S value among all the possible elements,
it considers a family of parameter values for a S value
and test whether independence dominates dependence
for all of them, or vice versa. For the sake of sim-
plicity, we introduce it for the particular case of two
binary variables, but its generalization to more cases
per variable is immediate.

We assume that we have a fixed S value. Then
we consider that the prior information about p(i, )
is a Dirichlet distribution of parameters a =
(a(O, O)a Oé((), 1)7 Ot(]., O)a Oé(l, 1))7 where Zz’,j Oé(l,j) =
S. The probability of the data (marginal likelihood),
under this prior information is given by:

_ 1) P(nx ()+ax (i)
BSDa = sy (I ")

, I(ax (i) D(n(i)talini)
Ii tox Grax (Hz’ T(a(i.7)) )

Where ax (i) = Zj a(i,j), ay(j)=>;a(i,j).

Under independence, we assume that p(0[i) = p(1|i)
in the prior information and then the probability of
the data under the resulting distribution is given by

_ r(s) I'(nx(i)+ax (i)

BSL, = rxys ([T i)
_T(S) C(ny () +ay ()
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Considering a set ® C {a | a(i,7) > 0,3, ; a(i,j) =
S}, the new interval-valued score can be defined as:

«1_ | . BSD, BSD,,
[BS., BS™] = |min por = max par

We assume that dependence dominates if BS, > 1,
independence dominates when BS* < 1 and there
is no dominance when 1 € [BS,,BS*]. This agrees
with the usual dominance for imprecise probability
[17] under strict preference taking as basis the poste-
rior probability of having dependence or independence
(considering that the prior probability is 0.5 for both
of them). This criterion will be denoted as BSDOM.

For set ® we have not considered the full set of pos-
sibilities: {a | a(i,j) > 0,3, ;a(i,j) = S} as in the
imprecise Dirichlet model considered in [18]. The rea-
son is that, with the exception of some trivial cases,
we can make BSD,/BSI, as small as we want (by
taking a very small (i, j), whereas ax (1) and ay (j)
are not so small, when at least in one observation
we have X = 4,Y = j ). Then the lower limit
of the interval would always approach 0 and depen-
dence would never dominate. We have found that
a reasonable approach is to divide the S value in
two parts S = S; + S3. Then S; is uniformly split
and we consider all the possible parameters for S,
value. Being more specific, if a;(i,j) = S1/4 and
&, = {OéQ | Otg(i,j) > 0721’,]’ Otg(i,j) = SQ}, then
® ={a=a; +ay | az € 3} where the addition of
vectors is pointwise addition. All the experiments in
this paper corresponds to S; = S; = S/2 and S = 2.

We do not know any direct method to compute the
upper and lower extremes of the interval, BS, and
BS*. Tt is also possible that if we consider the convex
hull of the family of prior distributions, then the up-
per and lower values of the interval will change (we are
optimizing a function for which we have not security
that the optimum is obtained in an extreme point).
However, we will keep only the Dirichlet prior distri-
butions (we consider a non convex prior information).
In this set, we have carried out an approximate com-
putation?. To compute the lower extreme, we have
selected the parameters ay trying to favour indepen-
dence as much as possible. We have considered the
following two possible selections for as (« is computed
as a1 + ag):

1. For each value i = 0,1, if n(i,j) > n(¢,5'), then
assign az(i,j') = S2/2,as(i,j) = 0; if n(i,j) =
n(i,j'), then as(i,j') = as(i,j') = S2/4.

2We do not believe that it is really a very hard problem, and
in most of the cases the extremes of the intervals are obtained
with extreme values of parameters as.
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ny (j)/N, then assign as(i, j') = Sa/2, as(i, j) =
0; if n(i,§)/nx (i) = ny(j)/N, then as(i,j") =
as(i,j') = S2 /4.

2. For each value ¢ = 0,1, if n(i,j)/nx(3)
!

The first strategy tries to make the conditional dis-
tributions of Y given X as uniform as possible. The
second tries to makes the conditional distributions as
similar as possible to the marginal one. They are sim-
ilar, but they do not always assign parameters in the
same way. For both cases, we compute the values
BSD, /BSI,, and take the minimum of them.

To compute the upper interval limit, we also consider
two parameters but trying to favour dependence. We
have also considered two vectors of parameters, com-
puting the maximum of BSD,/BS1I, for both vectors
of them:

1. For each value i = 0,1, if n(i,j) > n(i,5'), then
assign as(i,7) = S2/2,09(i,j') = 0.

2. For each i = 0,1, if n(i,j)/nx (i) > ny(j)/N,
then assign as(i,j) = S2/2,a2(i,j') = 0.

The strategy is dual of the strategy for the lower limit.

One of the criteria we are going to test in the exper-
iments, is to consider independence if BS, > 1 and
dependence otherwise. This criterion always makes
a decision and follows the intuitive idea of selecting
independence except when we have evidence enough
favouring dependence. It is similar to frequentist tests
of hypothesis, where the null hypothesis is accepted
except if we have evidence against it. In our case,
if the data do not decide for independence or depen-
dence, then we should prefer the simpler model that
does not assume the existence of a relation between
the two variables. However, as we will see it will have
better asymptotic properties than classical statistical
tests.

4 Experiments

We have carried out two series of experiments. In
both of them, we have simulated 10000 joint proba-
bility distributions for (X,Y) with dependence and
10000 in which X and Y are independent. To obtain
the probabilities we have followed Dirichlet distribu-
tions. In the two cases, the procedure has been the
same with the only difference of S value. We have
considered the case of S = 2 and S = 8. In the
dependence case the probabilities are randomly sim-
ulated according to a Dirichlet distribution of param-
eters (S/4,5/4,5/4,5/4). In the independence case,
we follow a similar procedure to obtain the marginal

distributions (simulated according to a Beta of pa-
rameters (5/2,5/2)) and then the joint probability is
computed as product of the marginal distributions.

For each one of the distributions, we have simulated
samples with sizes: 3, 5, 10, 20, 50, 100, 1000, 10000.
We consider very small samples as this is a particu-
larly important case. Even if we have a large sample,
when we are going to determine a model for the data,
and its complexity is going to depend of the amount
of data as in Bayesian networks learning, then some
crucial decisions are generally done with small sam-
ples.

Then we have tried to determine from each sample the
existence of dependence or independence of variables
X and Y. For each one of the scores we have mea-
sured the number of errors in recovering dependence-
independence relationships (for the dominance crite-
rion, BSDOM, we also give the number of cases in
which there is a decision). But, to evaluate their use
in classification, we have also computed the average of
the expected log-likelihood of the estimated probabil-
ity of Y given X with respect to the true probability
distribution, according to the following expressions:

1. If deciding for dependence }_; ; p(i, j) log p* (i)
2. If deciding for independence }_; . p(i, j) log p*(j)

where p is the original distribution with which the

samples were simulated and p*(i,j) = %:;0'5,
. H+1
p*(j) = AL

Aslarger is this value, the better is the method for de-
ciding whether X is useful to estimate the probability
of Y.

We report first and with more detail the results for
S = 2. In this case, we follow exactly the same
hypotheses to generate the distributions that are as-
sumed by B.S2 score, so we are in the ideal situation
for this score, and it should outperform the other ones.
The tables contain the results for all the methods to
decide about independence we have introduced and
another score BS2M OD which is equal to BS2, but
modifying the prior distribution for independence -
dependence. In BS2 it was 1/2 for each one of the
two possibilities. In BS2MOD we have given more
prior information to independence, to the point of ob-
taining exactly the same behaviour of BS, for small
samples (3 and 5). The number of errors can be seen
in Table 1 for the case of true dependence and in Table
2 in the case of distributions generated with indepen-
dence of X and Y. BSDOM criterion includes the
number of decisions between parentheses.

Tables 3 and 4 show the average expected log-



Table 1: Number of errors for 10000 repetitions for each sample size (independence and S = 2).

Sample Size | CHI ~ BIC K2 BS0.02 BS2 BS16 BS2MOD IMP BS. BSDOM (Dec.)
3 0 839 839 3346 3346 3346 0 839 0 0 (6654)

5| 312 1553 1553 2641 2641 4832 8 1553 86 86 (7445)

10 | 392 1287 1991 1258 2043 3691 110 2099 529 529 (8174)

20 | 506 792 1631 751 1546 3878 134 2356 540 540 (8770)

50 | 492 466 1215 420 1029 3439 120 2595 463 463 (9233)

100 | 523 313 896 279 726 2915 84 2636 397 397 (9486)

1000 | 507 84 281 55 223 1195 34 2686 145 145 (9920)

10000 | 482 27 76 13 71 347 12 2628 53 53 (9987)

Table 2: Number of errors on

10000 repetitions for each sample size (dependence and S = 2).

Sample Size CHI BIC K2 BS0.02 BS2 BS16 BS2MOD IMP BS. BSDOM (Dec.)
3 | 10000 8142 8142 5078 5078 5078 10000 8142 10000 5078 (5078)

5 8290 6750 6750 5141 5141 3287 9211 6750 9211 5141 (5930)

10 7225 5948 5456 5654 4822 3651 7985 5802 7050 4548 (7498)

20 5783 5359 4635 5748 4259 2844 6760 4585 5846 4209 (8363)

50 4136 4177 3568 5012 3382 2263 5123 3315 4302 3232 (8930)

100 3130 3400 2868 4259 2786 1872 3980 2522 3292 2704 (9412)

1000 1112 1453 1277 1898 1206 875 1591 983 1290 1204 (9914)

10000 383 557 513 711 489 393 580 366 509 493 (9984)

likelihood for the cases of dependence and indepen-
dence, respectively (in the case of dominance this av-
erage is only for the cases in which there is a decision).

From Tables 1, 2 and Tables 3, 4, we have obtained
Tables 5 and 6 respectively, where we give the addi-
tion of the errors and the average log-likelihood for
independence and dependence together.

The results for S = 8 are given in tables 7 and 8, but
integrating the cases of dependent and independent
distributions.

5 Discussion

We summarize our analysis of experiments results in
the following points:

e First we highlight an important property of the
procedure based on BS,. With small sample
sizes it always decides for independence. This
is similar to the chi-square tests, where if there
is not evidence against independence, then it de-
cides for independence. However, when the sam-
ple size increases, then it is more similar to the
Bayesian score. Test of independence keeps the
error of deciding dependence when there is in-
dependence constant (around 5% in our case).
But, when sample size increases this error can
be reduced without a big effect into the dual er-
ror. This is achieved by the BS, score that it
is very similar to the BS2 score for large sam-
ple sizes. The main difference with CH1 is that

BS, reduces the number of errors of assuming
dependence when there is independence for large
sample sizes.

There is no procedure which is better than the
others ones in all the situations, though Bayesian
score BS2 shows a very good behaviour in our
experiments in relation with the number of er-
rors. This is not surprising as we generated the
distributions of the experiments with exactly the
hypotheses assumed by BS2 in one case. In the
other case, we also used Dirichlet distributions to
generate the distributions, but with a different S
value.

In general, a smaller number of errors implies a
bigger log-likelihood, but this is not always the
case. The main reason is that the log-likelihood
errors are not symmetrical from dependence to
independence and vice versa. So the final average
error will depend of whether a method favours de-
pendence or independence. Also the scores have
been designed in order to detect independence
relationships and not for classification purposes
(except perhaps IM P that follows a more clas-
sification oriented criterion). For classification,
Bayesian procedures should be reformulated in
order to take into account the different classifica-
tion errors. Observe as score BS, obtains better
log-likelihood values for the experiments in which
S = 8 especially for small and intermediate sam-
ples. BS, is also based on a value of S = 2 as
BS2 but obtains better results by taking more



Table 3: Average log-likelihood for 10000 repetitions for each sample size (independence and S = 2).

Sample Size CHI BIC K2 BS0.02 BS2 BS16 BS2MOD IMP BS. BSDOM
3 | -0.587167 -0.603542 -0.603542  -0.617858 -0.617858  -0.617858  -0.587167 -0.603542  -0.587167 -0.607798
5 | -0.571321  -0.583437  -0.583437 -0.589336  -0.589336  -0.592899  -0.565971 -0.583437  -0.565971  -0.572510
10 | -0.544609 -0.551856  -0.555106 -0.550760  -0.553739  -0.557997  -0.540602 -0.552790  -0.543422  -0.545230
20 | -0.526979  -0.528688 -0.531910  -0.527086 -0.531123  -0.533776  -0.523701  -0.531798  -0.526012  -0.525874
50 | -0.511454  -0.511377 -0.513114  -0.510493 -0.512561  -0.514426  -0.509869  -0.514152  -0.511020  -0.515999
100 | -0.505875  -0.505473  -0.506311  -0.505029  -0.506031  -0.507035  -0.504841  -0.507158  -0.505492  -0.510250
1000 | -0.500295  -0.500191  -0.500239  -0.500165 -0.500224  -0.500321  -0.500171  -0.500451  -0.500204  -0.501925
10000 | -0.499720  -0.499708  -0.499710  -0.499707  -0.499710  -0.499715  -0.499707  -0.499736  -0.499709  -0.500224
Table 4: Average log-likelihood for 10000 repetitions for each sample size (dependence and S = 2).
Size CHI BIC K2 BS0.02 BS2 BS16 BS2MOD IMP BS., BSDOM
3 | -0.586945  -0.553335  -0.553335  -0.533924  -0.533024  -0.533924  -0.586945  -0.553335  -0.586945  -0.608072
5 | -0.523290  -0.509295  -0.509295  -0.498596  -0.498596  -0.495148  -0.542460 -0.509295  -0.542460  -0.540739
10 | -0.475576  -0.465054  -0.462433  -0.463466 -0.460152  -0.456599  -0.485666 -0.466862  -0.478404  -0.450949
20 | -0.434797  -0.432386  -0.420274  -0.439151  -0.427918  -0.426349  -0.442979  -0.430384  -0.436730  -0.417088
50 | -0.406696  -0.406789  -0.405274  -0.413848  -0.405004  -0.404112  -0.410667  -0.405381  -0.407574  -0.397799
100 | -0.396217  -0.396703  -0.395917  -0.400719  -0.395829  -0.395353  -0.398164  -0.395814  -0.396629  -0.393210
1000 | -0.386563  -0.386643  -0.386604  -0.386897  -0.386590  -0.386554  -0.386693  -0.386567 -0.386608  -0.386998
10000 | -0.385631  -0.385636 -0.385635  -0.385646  -0.385634  -0.385632  -0.385638  -0.385632 -0.385635  -0.385888

possibilities for the a parameters into account.

e In order to test whether BS, behaviour can be
obtained with a pure Bayesian procedure, we
have considered BS2M OD in which prior proba-
bility for independence has been increased in or-
der to mimic BS, for that sizes. However, the
asymptotic behaviour of BS, is better: the total
number of errors is always lower with BS, when
the sample size increases.

e Procedures IM P and C'HI makes too many er-
rors for large sample sizes, especially by no de-
creasing the errors of deciding dependence when
there is independence, but these errors are not
so important when we look at the log-likelihood.
The reason is that with a large sample size, we
can get good estimations of the joint probability
distribution without assuming the existing inde-
pendence. Independence is more important for
small sample sizes, but then the number of er-
rors is similar to the Bayesian procedures. So
these methods are appropriate for classification
problems. Furthermore, they do not make ad-
ditional hypotheses about the way in which data
are generated and their behaviour is not expected
to deteriorate when these hypotheses are not ful-
filled.

e Dominance criterion makes a lower percentage of
errors that methods that make decisions in all
the cases, but this procedure avoids to classify
unsure situations. When looking at the average
log-likelihood we can observe that, in general, it
is also decreased, but there is an apparent para-
doxical result for sample size 5 and S = 2. We
obtained a lower average log-likelihood by using

the dominance criterion. This surprised us, as
classifying only the sure cases we expected to in-
crease the average log-likelihood. But, at the end
we understand that this is a plausible result. The
explanation is that dominance only takes into ac-
count independence-dependence errors which are
measured in a symmetrical way. If we want to
maximize log-likelihood all the problem should
be reformulated for this aim, and then the deci-
sion procedures would be different. It is possi-
ble that even if we do fewer errors in percentage
the errors we are doing have a relatively low log-
likelihood in relation with the cases in which we
do not make decisions. In any case, there is a
strong asymmetry in the number of errors of the
dominance criterion. Most of the errors are done
by considering independence when there is de-
pendence. We do not have a reason for it, and
possibly is due to the imprecise Dirichlet model
we have considered or to the approximate com-
putation.

o If we compare Bayesian procedures (including K2

and BIC) with BS, we see that even with these
few experiments none of them is better than the
others in all the situations. For example, BS,
is better with large samples for S = 2 (for log-
likelihood and number of errors) and in small
samples for S = 8 (log-likelihood criterion).

e With larger S values in the Bayesian equivalent

criteria, we have more tendency to favour depen-
dence. This can be seen looking at the errors of
BS0.02,BS2, and BS16 in the cases of depen-
dence and independence. However, these differ-
ences are less important for small sample sizes.
So we would have not obtained a similar score



Table 5: Integrated number of errors for S = 2 obtained from Table 1 and Table 2.

Table 6: Integrated averaged log-likelihood for S = 2

Sample Size CHI BIC K2 BS0.02 BS2 BS16 BS2MOD IMP BS. BSDOM (Dec.)
3 | 10000 8981 8981 8424 8424 8424 10000 8981 10000 5078 (11732)

5 8602 8303 8303 7782 7782 8119 9297 8303 9297 5227 (13375)

10 7617 7235 7447 6912 6865 7342 8095 7901 7579 5077 (15672)

20 6289 6151 6266 6499 5805 6722 6894 6941 6386 4749 (17133)

50 4628 4643 4783 5432 4411 5702 5243 5910 4765 3695 (18163)

100 3653 3713 3764 4538 3512 4787 4064 5158 3689 3101 (18898)

1000 1619 1537 1558 1953 1429 2070 1625 3669 1435 1349 (19834)

10000 865 584 589 724 560 740 592 2994 562 546 (19967)

obtained from Table 3 and Table 4.

Sample Size CHI BIC K2 BS0.02 BS2 BS16 BS2MOD IMP BS. BSDOM
3 | -0.587056 -0.5784385 -0.5784385 -0.575891  -0.575891 -0.575891 -0.587056 -0.5784385  -0.587056 -0.608306

5 |-0.5473055  -0.546366  -0.546366 -0.543966  -0.543966 -0.5440235 -0.5542155 -0.546366 -0.5542155 -0.558423

10 |-0.5100925  -0.508455 -0.5087695  -0.507113 -0.5069455 -0.507298  -0.513134  -0.509826  -0.510913 -0.500123

20 | -0.480888  -0.480537  -0.480592 -0.4831185 -0.4795205 -0.4800625 -0.48334  -0.481091 -0.481371 -0.472773

50 | -0.459075  -0.459083  -0.459194 -0.4621705 -0.4587825  -0.459269  -0.460268 -0.4597665  -0.459297 -0.457885

100 | -0.451046  -0.451088  -0.451114  -0.452874 -0.45093  -0.451194 -0.4515025  -0.451486 -0.4510605 -0.451959

1000 | -0.443429  -0.443417 -0.4434215  -0.443531  -0.443407 -0.4434375  -0.443432  -0.443509  -0.443406 -0.444479

10000 | 0.4426755  -0.442672 -0.4426725 -0.4426765  -0.442672 -0.4426735 -0.4426725  -0.442684  -0.442672 -0.443053

to BS, by considering dominance under several
values of parameter S. In fact, the lower limit
of the dominance interval would be equal or very
similar to the Bayesian score with the lowest S
value (BS0.02) which makes a lot of errors, by
considering dependence in the case of indepen-
dence, with a sample size of 3.

6 Conclusions and Future Work

In this paper we have carried out an empirical com-
parison of several criteria for deciding independence
and introduced a new method based on the theory
of imprecise probability. Perhaps the most impor-
tant conclusion is that no single method outperforms
the others. The final criterion should be chosen as
a function of the objective (deciding independence or
classification) and the sample size.

But, the main conclusion of this paper is a new pro-
cedure to decide for dependence-independence that
for small sample sizes always considers independence
and that for large sample sizes is similar to Bayesian
procedures. This method can be used when we want
to determine the dependence relationships that can
be found in a set of data, but we really only want
relationships with real support, avoiding spurious re-
lationships.

For future work we plan to consider the following
points:

e To make more extensive studies, changing the
procedure of generating the distributions, and

studying the errors in the case of dependence as
a function of the mutual information between the
variables (measured in the original true distribu-
tion).

e To study the performance of the criteria for vari-
ables with more than two possible values.

e To consider new criteria or modifications of the
existing ones. For example, to study different sets
of parameters for the imprecise Dirichlet model.

e To consider criteria based on the exact distribu-
tion of the mutual information given the data
taking into account the results by Hutter and
Zaffalon [8].

e To extend BS, criterion to be used in learning
Bayesian networks algorithms.

e To determine classification oriented dominance
criteria based on imprecise probability.
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