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Abstract

We show that every additively representable compar-
ative probability ordering is determined by at least
n− 1 binary subset comparisons. We show that there
are many orderings of this kind, not just the lexico-
graphic ordering. These results provide answers to
two questions asked by Fishburn.
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1 Introduction

Let Ln be the set of all comparative probability or-
derings on the set consisting of n elements which are
representable by an order preserving positive measure.
Fishburn in [5] formulated the following two problems
(Open problems 2 and 3, page 243):

1. Show that no order ≺ ∈ Ln is determined by n−2
(or less) binary subset comparisons.

2. Decide whether every ≺ ∈ Ln which is deter-
mined by n− 1 comparisons has the structure of
the lexicographic ordering determined by

{i1, . . . , ij} ≺ ij+1, for j = 1, 2, . . . , n − 1.

We prove the first statement and show that the lexi-
cographic ordering is only one of many orderings that
can be determined by n − 1 comparisons. We can-
not characterise all of them but show that they are
in one-to-one correspondence with the comparative
probability orderings on the set consisting of n − 1
elements determined by n − 1 comparisons.

2 Preliminaries

Definition 1. Let X be a finite set. A linear order
≺ on 2X is called a comparative probability ordering

on X if ∅ ≺ A for every non-empty subset A of X,
and ≺ satisfies de Finetti’s axiom, namely

A ≺ B ⇐⇒ A ∪ C ≺ B ∪ C, (1)

for all A, B, C ∈ 2X such that (A ∪ B) ∩ C = ∅.

For convenience, we will further suppose that X =
[n] = {1, 2, . . . , n} and denote the set of all compara-
tive probability orderings on 2[n] as Pn.

If we have a probability measure p = (p1, . . . , pn)
on X, where pi is the probability of i, then we know
the probability of every event A, by the rule p(A) =∑

i∈A pi. We may now define a relation � on 2X by

A � B if and only if p(A) ≤ p(B).

If pi > 0 for all i, and the probabilities of all events
are different, then � is a comparative probability or-
dering on X, and we will denote it as ≺p. Any such
ordering is called (additively) representable. The set
of representable orderings is denoted Ln. It is known
[6] that Ln is strictly contained in Pn for all n ≥ 5.

We will always assume here that a linear order ≺ on
2X is a comparative probability ordering. As in [3, 4],
it is often convenient to assume that

1 ≺ 2 ≺ . . . ≺ n, (2)

which is equivalent to assuming that p1 < p2 < . . . <
pn when ≺ is a comparative probability ordering rep-
resented by the probability measure p = (p1, . . . , pn).
The set of all comparative probability orderings on [n]
that satisfy (2), will be denoted L∗

n.

To every linear order ≺ ∈ L∗
n, there corresponds a

discrete cone C(≺) in Tn, where T = {−1, 0, 1} (as
defined in [3]).
Definition 2. A subset C ⊆ Tn is said to be a dis-
crete cone if the following properties hold:

D1. {e1, e2 − e1, . . . , en − en−1} ⊆ C, where
{e1, . . . , en} is the standard basis of R

n,



D2. {−x,x} ∩ C �= ∅ for every x ∈ Tn,

D3. x + y ∈ C whenever x,y ∈ C and x + y ∈ Tn.

We note that in [3] Fishburn requires 0 /∈ C because
his orders are anti-reflexive. In our case, condition D2
implies 0 ∈ C.

For each subset A ⊆ X we define the characteristic
vector χA of this subset by

χA(i) =
{

1 i ∈ A,
0 i /∈ A,

i = 1, 2, . . . , n. Given a comparative probability
ordering ≺ on X, we define a characteristic vector
χ(A, B) = χB−χA ∈ Tn for every possible comparison
A ≺ B. The set of all characteristic vectors χ(A, B),
for A, B ∈ 2X such that A ≺ B, is denoted as C(≺).
The two axioms of comparative probability guarantee
that C(≺) is a discrete cone (see [3, Lemma 2.1]).

Definition 3. A comparative probability ordering ≺
satisfies the mth cancellation condition Cm if and
only if there is no set {x1, . . . ,xm} of non-zero vec-
tors in C(≺) for which there exist positive integers
a1, . . . , am such that

a1x1 + a2x2 + · · · + amxm = 0. (3)

It is known [6, 3, 1] that a comparative probability
ordering ≺ is representable if and only if all cancella-
tion conditions for C(≺) are satisfied. The following
condition is a reformulation of Axiom 3 in [5] in terms
of discrete cones associated with ≺.

Lemma 1. Let ≺ ∈ L∗
n be a representable compar-

ative probability ordering and C(≺) the correspond-
ing discrete cone. Suppose {x1, . . . ,xm} ⊆ C(≺)
and suppose that for some positive rational numbers
a1, . . . , am and x ∈ Tn

x = a1x1 + a2x2 + · · · + amxm. (4)

Then x ∈ C(≺).

Proof. Let ai = pi/qi, where pi and qi are positive
integers. Then multiplying by the least common mul-
tiple of all the denominators, (4) can be written as

sx = s1x1 + s2x2 + · · · + smxm, (5)

where s0, s1, . . . , sm are integers. Suppose x /∈ C(≺).
Then −x ∈ C(≺) and (5) can be written as

s0(−x) + s1x1 + s2x2 + · · · + smxm = 0,

which contradicts the (m + 1)th cancellation condi-
tion.

3 What does it mean that a set of
comparisons determine the order?

This will be better explained algebraically, in terms
of generators of cones.

Suppose that C = C(≺) is a discrete cone, with
≺ ∈ Pn not necessarily representable. Then the only
way we can deduce one comparison from several oth-
ers is by means of transitivity. Use of transitivity cor-
responds to the addition of the corresponding char-
acteristic vectors of the cone. Indeed, suppose that
A ≺ B ≺ C. Then χ(A, B) + χ(B, C) = χ(A, C).

If ≺ is known to be representable, then there is an
additional way to deduce a comparison from several
others, using the cancellation conditions. This can be
formulated in terms of multilists of comparisons (see,
for example, [5], proof of Theorem 3.7). In terms of
cones this tool is given in Lemma 1. It says that
in representable cones we can deduce new compar-
isons by forming linear combinations of the charac-
teristic vectors of known comparisons with positive
coefficients.

We will refer to these as weak and strong generation
respectively.

Let us define a restricted sum for vectors in a discrete
cone C. Let u,v ∈ C. Then

u ⊕ v =
{

u + v if u + v ∈ Tn,
undefined if u + v /∈ Tn.

Definition 4. We say that the cone C is weakly gen-
erated by vectors v1, . . . ,vk if every nonzero vec-
tor c ∈ C can be expressed as a restricted sum of
v1, . . . ,vk, in which each generating vector can be
used as many times as needed. We denote this by
C = <v1, . . . ,vk>w.

We say that C is strongly generated by v1, . . . ,vk

if every nonzero vector c ∈ C can be deduced from
v1, . . . ,vk by forming restricted sums and applying
Lemma 1.

A set of comparisons A1 ≺ B1, . . . , A� ≺ B� deter-
mine ≺ in Pn if the characteristic vectors χ(Ai, Bi)
weakly generate C(≺). If ≺ is representable, the com-
parisons A1 ≺ B1, . . . , A� ≺ B� determine ≺ in Ln

if the vectors χ(Ai, Bi) strongly generate C(≺).
Example 1. Let us consider the ordering

∅ ≺ 1 ≺ 2 ≺ 12 ≺ 3 ≺ 13 ≺ 23 ≺ 123.

and its respective cone C = C(≺). Let us choose
v1 = (1, 0, 0), v2 = (−1, 1, 0), v3 = (−1,−1, 1),
which correspond to comparisons

∅ ≺ 1, 1 ≺ 2, 12 ≺ 3, (6)



respectively. Then all other nonzero vectors of C can
be expressed using v1,v2,v3. For example,

v1 ⊕ v2 = (0, 1, 0),
v1 ⊕ v3 = (0,−1, 1),
v2 ⊕ v3 = (−1, 0, 1),

v1 ⊕ (v1 ⊕ v2) = (1, 1, 0),
(v1 ⊕ (v1 ⊕ v2)) ⊕ v3 = (0, 0, 1),

etc. Thus C = <v1,v2,v3>w. The ordering ≺ is rep-
resentable, but we did not use linear combinations to
generate C. Therefore the comparisons (6) determine
≺ not only in the class of representable orderings Ln

but in the class of all comparative probability orderings
Pn.

Let us now give an example which shows that for rep-
resentable cones weak and strong generation are dif-
ferent. We will construct a representable cone whose
minimal set of weak generators will not be a minimal
set of strong generators.

Example 2. In the example constructed by Kraft,
Pratt and Seidenberg ([6], page 415) we re-label q = 1,
r = 2, s = 3, p = 4 and t = 5 to obtain a non-
representable comparative probability ordering ≺ on
[5]:

∅ ≺ 1 ≺ 2 ≺ 3 ≺ 12 ≺ 13 ≺ 4 ≺ 14 ≺ 23 ≺ 5

≺ 123 ≺ 24 ≺ 34 ≺ 15 ≺ 124 ≺ 25 ≺ 134 . . .

(where only the first 17 terms are shown). It does not
satisfy the 4th cancellation condition since it contains
the following comparisons:

13 ≺ 4, 14 ≺ 23, 34 ≺ 15, 25 ≺ 134,

whose corresponding characteristic vectors u1 =
(−1, 0,−1, 1, 0), u2 = (−1, 1, 1,−1, 0), u3 =
(1, 0,−1,−1, 1), u4 = (1,−1, 1, 1,−1) satisfy

u1 + u2 + u3 + u4 = 0.

The structure of the corresponding cone C = C(≺)
is as follows: it includes all vectors of Tn lying in
the half-space Sb = {x ∈ R

n | (x,b) > 0} and the
four vectors u1, u2, u3, u4 lying on the hyperplane
Hb = {x ∈ R

n | (x,b) = 0} with the normal vector

b =
1
16

(1, 2, 3, 4, 6).

In this linear ordering 25 is the 16th subset and 134 is
the 17th so 25 ≺ 134 is the central comparison of this
ordering. This comparison can be reversed (see [7]),
that is, we can replace 25 ≺ 134 with 134 ≺ 25 and
still have a comparative probability ordering ≺′ with

the cone C ′ = (C \ {u4}) ∪ {−u4}. Moreover, this
will be a representable comparative probability order-
ing since all cancellation conditions will be satisfied.
Indeed, if we had a set of vectors {v1, . . . ,vk} ⊂ C ′

such that

v1 + v2 + . . . + vk = 0,

then {v1, . . . ,vk} ⊆ {u1,u2,u3,−u4}, which is im-
possible.

It is clear that any set of weak generators of C ′ must
include all of u1, u2, u3, −u4. However

−u4 = u1 + u2 + u3

and hence −u4 can be excluded from the list of strong
generators. It cannot be excluded from any list of weak
generators since u1 + u2 /∈ Tn, u1 + u3 /∈ Tn, and
u2 + u3 /∈ Tn.

Definition 5. Let C be a discrete cone. Define its
weak rank, rankw(C), to be the minimal number of
vectors in C that weakly generate C. Define its strong
rank, ranks(C), to be the minimal number of vectors
in C that strongly generate C.

Obviously ranks(C) ≤ rankw(C), and the previous
example shows that they may be different.

Definition 6. Let A and B be disjoint subsets of [n].
The pair (A, B) is said to be critical for ≺ if A ≺ B
and for no C ⊆ [n] is A ≺ C ≺ B.

Now we can give an easy proof of the important The-
orem 3.7 of [5].

Theorem 1 (Fishburn). Let ≺ ∈ Ln be a repre-
sentable comparative probability ordering. Suppose
that A1 ≺ B1, . . . , A� ≺ B� is the smallest set of
subset comparisons that uniquely determines ≺ in Ln.
Then the pairs (A1, B1), . . . , (A�, B�) are critical for
≺.

Proof. The smallest set of subset comparisons corre-
sponds to a minimal set of strong generators G =
{g1, . . . ,g�} of the respective cone C = C(≺). By
the comment in the beginning of this section, to show
that a pair (A1, B1) is critical, it is enough to show
that g1 = u + v for no two vectors u,v ∈ C. Let
us assume the contrary. Then mu =

∑�
i=1 migi and

kv =
∑�

i=1 kigi for some positive integers m, mi and
k, kj . Let r = lcm (m, k). Then, multiplying the
two equations by their respective factors we obtain
ru =

∑�
i=1 m′

igi and rv =
∑�

i=1 k′
igi. Adding these

we obtain

rg1 =
�∑

i=1

(m′
i + k′

i)gi.



We now consider two cases. If r > m′
1 + k′

1, then
g1 can be excluded from the set of generators G
which was supposed to be minimal, contradiction. If
r ≤ m′

1 + k′
1, then the �th cancellation condition is

violated, contradiction again. This proves the theo-
rem.

4 The Product of Two Orderings

Definition 7. Suppose we have two comparative
probability orderings ≺1 ∈ Pk and ≺2 ∈ Pm.
Let us define a new comparative probability order-
ing ≺ = ≺1 × ≺2 on Pk+m as follows. First we
transfer the ordering ≺2 from the set [m] to the set
{k + 1, k + 2, . . . , k + m} in the obvious way. For any
set A = {i1, . . . , is} ⊆ [m] we define its “shift” Ā =
{i1 +k, i2 +k, . . . , is +k} ⊆ {k +1, k +2, . . . , k +m}.
We define Ā ≺2 B̄ if and only if A ≺2 B. It invites no
confusion to call both the original order and the shifted
one by the same name. Now, let A, B ∈ [k+m]. Then
they can be uniquely represented as A = A1 ∪ A2 and
B = B1 ∪ B2, where A1, B1 ∈ [k] and A2, B2 ∈ [k].
Then A ≺ B if and only if A2 ≺2 B2, or A2 = B2

and A1 ≺1 B1.

Definition 8. The ordering ≺ ∈ Ln is called re-
ducible if it can be represented as a product of two
other orderings.

Example 3. The lexicographic ordering ≺ ∈ Ln de-
fined in the introduction can be represented as

≺= (. . . (≺0 × ≺0)× ≺0) × . . . )× ≺0,

where ≺0 is the only ordering in L1, namely:
∅ ≺0 {1}.
Definition 9. Let ≺1 ∈ Pk and ≺2 ∈ Pm be two
comparative probability orderings with respective dis-
crete cones C1 ⊂ T k and C2 ⊂ Tm. Define C1×C2 ⊂
T k+m to be the discrete cone of the product ≺1 × ≺2.

The cone C1 ×C2 consists of all vectors (g,0), where
g ∈ C1 and all vectors (g,h), where g ∈ T k and
h ∈ C2.

Theorem 2. rank(C1 × C2) = rank(C1) + rank(C2),
where the rank can be either weak or strong.

Proof. We will prove the theorem for the case of a
weak rank. The proof for the case of a strong rank is
similar.

Let {g1, . . . ,gs} and {h1, . . . ,ht} be minimal sets
of weak generators for C1 and C2 respectively. Let
G be the s × k matrix whose rows are the generators
{g1, . . . ,gs} and H be the t × m matrix whose rows
are the generators {h1, . . . ,ht}. Let 1t×k be the t×k
matrix whose all entries are 1, and 0s×m be an s×m

zero matrix. Now we are going to check that the rows
of the matrix

M =
[

G 0s×m

−1t×k H

]

generate C1 × C2.

It is obvious that any row (g,0), where 0 �= g ∈ C1

can be obtained from the first s rows using the opera-
tion ⊕. In particular, the row (1,0) can be obtained,
where 1 is the k-dimentional whose all entries are 1.
Firstly, we will show that every vector (−1,h), where
0 �= h ∈ C2 can be generated. For this we need to
show that if (−1,h1) and (−1,h2) can be generated
and h1⊕h2 is defined, then also (−1,h1⊕h2) can be
generated. To show this we note that

(−1,h1 ⊕ h2) = ((1,0) ⊕ (−1,h1)) ⊕ (−1,h2).

Suppose now that c = (g,h) ∈ T k+m, where g ∈ T k

and 0 �= h ∈ C2. Let us show that c can be generated
using the rows of M as generators. It is not difficult
to see that there exist vectors g1,g2 ∈ C1 such that

g = (−1 ⊕ g1) ⊕ g2.

Then c can be obtained as follows:

c = (g,h) = ((−1,h) ⊕ (g1,0)) ⊕ (g2,0).

It is clear that the set of generators given as rows of
M is minimal.

Example 4. Let us consider the ordering

∅ ≺ 1 ≺ 2 ≺ 3 ≺ 12 ≺ 13 ≺ 23 ≺ 123.

and its respective cone C = C(≺). This cone has the
following set of generators (both weak and strong):

h1 = (−1, 1, 0),
h2 = (0,−1, 1),
h3 = (1, 1,−1).

Let ≺0 be the ordering ∅ ≺0 1 of L1. Then apropos
of the proof of Theorem 2 the rows u1, . . . ,u4 of the
matrix

M =







1 0 0 0
−1 −1 1 0
−1 0 −1 1
−1 1 1 −1







generate the cone for the ordering ≺0 × ≺.

We conclude this section with the following



Theorem 3. The product of two representable com-
parative probability orderings ≺1 ∈ Pk and ≺2 ∈ Pm

is a representable comparative probability ordering of
Lk+m.

Proof. Let p = (p1, . . . , pk) and q = (q1, . . . , qm)
be the probability measures that represent ≺1 and
≺2, respectively. Since both orderings are linear, the
following number is non-zero

ε = min
I,J






∣
∣
∣
∣
∣
∣

∑

i∈I

qi −
∑

j∈J

qj

∣
∣
∣
∣
∣
∣





, I, J ⊆ [m], I ∩ J = ∅.

It is easy to check that the measure given by

1
ε + 1

(εp1, εp2, . . . , εpk, q1, q2, . . . , qm)

defines the ordering ≺1 × ≺2.

5 Main Results

We recall a few basic facts about hyperplane ar-
rangements in R

n (see [8] for more information about
them). Any hyperplane H = {x ∈ R

n | (n,x) = 0},
where n is a non-zero vector, we will call linear. The
vector n is called the normal vector of H. It is an
(n− 1)-dimensional subspace of R

n. If a �= 0, any hy-
perplane J = {x ∈ R

n | (n,x) = a} will be called an
affine hyperplane. An affine hyperplane is a translate
of the linear hyperplane with the same normal vector.

A hyperplane arrangement A is any finite set of hyper-
planes. A region of an arrangement A is a connected
component of the complement of the union U of the
hyperplanes of A, i.e., the set

U = R
n \

⋃

H∈A
H.

Any region of an arrangement is an open set.

Let A be an arrangement of hyperplanes in R
n and J

be a hyperplane in R
n. Then the set

AJ = {H ∩ J | H ∈ A}

is called the induced arrangement of hyperplanes in J .

Let A, B ⊆ [n] be disjoint subsets, of which at least
one is non-empty. We put in correspondence with
this pair the hyperplane H(A, B) in R

n given by the
equation

∑

a∈A

xa −
∑

b∈B

xb = 0.

These hyperplanes have normal vectors in the set
{−1, 0, 1}n \0, where 0 is the n-dimensional zero vec-
tor. Let us denote the corresponding hyperplane ar-
rangement by A. Let J be the hyperplane defined by

the equation x1 + x2 + . . . + xn = 1 and AJ be the
induced hyperplane arrangement. We are interested
in the regions of AJ which lie in the positive orthant
R

n
+ of R

n, given by xi ≥ 0, i = 1, 2, . . . , n. These
regions altogether form a simplex S in J .

Every point p = (p1, . . . , pn) ∈ S defines a repre-
sentable comparative probability ordering ≺p from
Ln, the one which obtains when we allocate measure
pi to i for i = 1, 2, . . . , n. If p and q are two points
from S, then the orderings ≺p and ≺q will coincide if
and only if p and q are in the same region of the hy-
perplane arrangement AJ . This immediately follows
from the fact that the order A ≺ B changes to B ≺ A
(or the other way around) if and only if we cross the
hyperplane H(A, B). Thus every comparative prob-
ability ordering from Ln is so represented by one of
the regions. Every such region is a convex polytope.

Let A, B ⊆ [n] be two non-empty disjoint subsets.
Then we can have both A ≺ B and B ≺ A, so the
comparison of A and B gives us certain information
about the ordering. However, if A = ∅ and B is non-
empty, then A ≺ B and such comparison gives no
information about the ordering (as it is axiomatic).
The latter comparisons correspond with the hyper-
planes xi = 0, for i = 1, 2, . . . , n.

Let P be the polytope representing ≺p. A face of the
polytope will be called significant if it is not contained
in any of the hyperplanes xi = 0. It is now clear that
the minimal number of subset comparisons needed to
define ≺p is the number of significant faces of the
polytope representing ≺p. We illustrate this in the
following example.

Example 5. The 12 regions on the figure below rep-
resent all 12 comparative probability orderings on [3].

x3

x1

x2

The two shaded triangular regions correspond to the
two orderings

1 ≺ 2 ≺ 12 ≺ 3 ≺ 13 ≺ 23 ≺ 123,

1 ≺ 2 ≺ 3 ≺ 12 ≺ 13 ≺ 23 ≺ 123,



which satisfy 1 ≺ 2 ≺ 3, with the lighter one cor-
responding to the first (lexicographic) ordering. How-
ever one of the boundaries for the lexicographic order-
ing is x1 = 0 and it is determined by two comparisons,
while the other order needs three comparisons since all
faces of the corresponding region are significant.

A simple but important statement is contained in the
following

Lemma 2. Let P be the polytope representing the or-
dering ≺p, where p is a probability measure. Then P
can have at most one insignificant face.

Proof. Indeed, if pj = minn
i=1 pi, then one of its faces

is contained in the hyperplane xj = 0 and this is the
only insignificant face of P . Suppose that another
face of P is contained in xk = 0. Since P lies in the
hyperplane xk − xj ≥ 0, we will have xk = xj = 0 on
this face. Since this face is also in J , it cannot have a
nonzero (n − 2)-dimensional volume. However every
face of an (n − 1)-dimensional polytope must have a
nonzero (n − 2)-dimensional volume.

The following theorem answers Fishburn’s first ques-
tion.

Theorem 4. Let ≺ be a representable comparative
probability ordering. Then it is determined by at least
n − 1 binary subset comparisons A ≺ B, where A, B
are disjoint non-empty subsets of [n]. If all faces of
the polytope P representing ≺ are significant, then ≺
is determined by at least n binary subset comparisons.

Proof. Consider the hyperplane J defined by the
equation x1 + x2 + . . . + xn = 1, and the simplex
S = J ∩R

n
+ and the induced partitioning of S into re-

gions by the hyperplanes of the arrangement AJ . Let
p be a probability measure that corresponds to a rep-
resentable ordering ≺ ∈ Ln. The region P to which p
belongs is an open convex polytope. Since it is open,
it has a nonzero (n−1)-dimensional volume in J and,
therefore must have at least n vertices. (Indeed if P
only had the vertices A1, . . . , Ak, where k < n, then
the k−1 vectors −−−→A1A2, . . . , −−−→A1Ak are linearly depen-
dent and the polytope P has zero volume).

Now, having at least n vertices, P must have at least
n faces. Indeed, let H1, . . . , Hk be the hyperplanes
that contain faces of P . Let A be any vertex of P .
Then the collection of hyperplanes to which A belongs
have a unique point of intersection, which is A. In an
n−1-dimensional hyperplane J one needs at least n−1
hyperplanes to intersect in a point. Hence P has at
least n − 1 faces containing A. Since P is bounded,
there must be at least one other face.

If all faces are significant, each face corresponds to a
non-trivial subset comparison, hence we need at least
n subset comparisons to determine ≺. Otherwise by
Lemma 2 there is a single insignificant face. In this
case n−1 subset comparisons are needed to determine
≺.

For orderings in L∗
n, i.e. for those for which (2) is

satisfied, we have the following
Corollary 1. Let ≺ be a representable comparative
probability ordering in L∗

n which is determined by ex-
actly n − 1 binary subset comparisons. Then x1 = 0
contains one of the faces of the region which corre-
sponds to ≺.

This can be expressed in terms of discrete cones as
follows:
Corollary 2. Let ≺ be a representable comparative
probability ordering in L∗

n which is determined by ex-
actly n−1 binary subset comparisons. Then the vector
g1 = (1, 0, . . . 0) is present in any set of generators of
the corresponding discrete cone C(≺).

Now we can give a structural characterisation of the
comparative probability orderings from L∗

n whose cor-
responding polytope has one of its faces contained in
x1 = 0.
Theorem 5. Let ≺ be a comparative probability or-
derings from L∗

n whose corresponding polytope P has
one of its faces contained in x1 = 0. Then ≺ =≺0

× ≺′, where ≺0 is the only ordering in L1 and ≺′ is
a comparative probability ordering from L∗

n−1.

Proof. Let S be the minimal set of comparisons that
define ≺. By Theorem 1 all comparisons in S are
critical. Let A ≺ B be any one comparison from S,
where A, B ⊆ [n] are disjoint and non-empty. Let us
consider the hyperplane

∑

a∈A

xa =
∑

b∈B

xb.

which correspond to this comparison. Since p does
not lie on this hyperplane, assume without loss of gen-
erality that

∑

a∈A

pa <
∑

b∈B

pb.

Let us show that we also have
∑

a∈A∪{1}
pa <

∑

b∈B\{1}
pb. (7)

First, imagine that 1 ∈ B. Since A ≺ B is critical, we
have B \ {1} ≺ A, hence

∑

b∈B\{1}
pb <

∑

a∈A

pa <
∑

b∈B

pb.



Then

∑

b∈B\{1}
xb <

∑

a∈A

xa <
∑

b∈B

xb. (8)

for every interior point x of this region and
∑

b∈B\{1}
xb ≤

∑

a∈A

xa ≤
∑

b∈B

xb. (9)

on the faces of P . In particular, (9) must be true
on the face x1 = 0, which is a contradiction since
no internal point of that face is on the hyperplane∑

b∈B\{1} xb =
∑

a∈A xa. Similarly, imagine that 1 /∈
B. Then similar considerations lead to

∑

a∈A

pa <
∑

b∈B

pb <
∑

a∈A∪{1}
pa,

and a contradiction can be obtained in a similar way.

It follows that 1 ∈ A, since assuming the contrary will
make the comparison A ≺ B non-critical, which is a
contradiction.

Now, consider C = C(≺). We know that this cone
has n strong generators, {g1, . . . ,gn}, with g1 =
(1, 0, . . . 0). The other strong generators g2, . . . ,gn

correspond to characteristic vectors of critical pairs
Ai ≺ Bi from S with non-empty Ai and Bi. We
proved that 1 ∈ Ai for all i = 2, . . . , n, hence the
corresponding generators will be gi = (−1,g′

i) for all
2 ≤ i ≤ n, where g′

i ∈ Tn−1. Thus the rows of the
following matrix are the strong generators of C.

G =








1 0
−1 g′

2
...

...
−1 g′

n








Clearly g′
2, . . .g

′
n generate a cone C ′ = C(≺′) for some

≺′ ∈ Ln−1. As rank(C ′) ≤ n − 1, the ordering ≺′ is
determined by no more than n− 1 comparisons. The
form of G demonstrates that C = C(≺0)×C ′, and so
≺ =≺0 × ≺′.

Now we can give a characterisation of the comparative
probability ordering from L∗

n that can be determined
by n − 1 binary comparisons, answering Fishburn’s
second question.

Theorem 6. Let ≺ be a comparative probability or-
dering from L∗

n that can be determined by n−1 binary
comparisons. Then it is reducible and ≺ =≺0 × ≺′,
where ≺0 is the only ordering in L1 and ≺′ is a com-
parative probability ordering from L∗

n−1 that can be
determined by no more than n−1 comparisons. Con-
versely, whenever we have ≺′ ∈ L∗

n−1 determined by

no more than n − 1 comparisons, then ≺ =≺0 × ≺′

is a comparitive probability ordering in L∗
n that can

be determined by n− 1 binary comparisons, unless ≺′

requires exactly n− 1 comparisons and is reducible to
≺′ =≺0 × ≺′′.

Proof. Let ≺ ∈ L∗
n be any order determined by a set

of n − 1 binary comparisons. Let p be a probability
measure that determines ≺, and P the correspond-
ing polytope in J . Then Corollary 1 implies that
x1 = 0 is a face of P . By Theorem 5 we know that
≺ =≺0 × ≺′, where ≺0 is the only ordering in L1 and
≺′ is a comparative probability ordering from L∗

n−1.
Let C ′ = C(≺′). Then rank(C ′) = n − 1 and ≺′ is
determined by n − 1 or n − 2 comparisons.

For the converse, if ≺′ ∈ Ln−1 is determined by at
most n − 1 comparisons, we will have:

Case 1 ≺′ is determined by n − 1 comparisons and
≺′ �=≺0 × ≺′′. Then if H is a matrix with n− 1 rows
that are strong generators of C(≺′),

G =
[

1 0
−1 H

]

generates the cone C = C(≺0 × ≺′). However, the
first row is g1 = (1, 0, . . . 0) and so ≺ =≺0 × ≺′ is
determined by n− 1 binary comparisons. (We do not
have to add a row (1, 0, , . . . , 0) to H because the row
(−1, 1, 0, . . . , 0) is strongly implied from other rows
of G.)

Case 2 ≺′ is determined by n−2 comparisons. Then,
as we proved in Theorem 8 the cone C(≺′) has n − 1
generator h1, . . . ,hn−1 with h1 = (1, 0, . . . , 0). Then
the rows of

G =
[

1 0
−1 H

]

are generators of C and since its first row is g1 =
(1, 0, . . . 0), the corresponding ordering ≺ is deter-
mined by n − 1 comparisons.

Theorem 7. There are exactly 2 orders in L∗
4 that

can be determined by 3 binary comparisons, and ex-
actly 11 orders in L∗

5 that can be determined by 4 com-
parisons.

Proof. There are 2 members of L∗
3. The lexicographic

order ≺1 in L∗
3 is determined by the two comparisons

1 ≺1 2 and 12 ≺1 3, and hence ≺ =≺0 × ≺1 ∈ L4 is
determined by 1 ≺ 2, 12 ≺ 3 and 123 ≺ 4. The other
order ≺2 of L3 is determined by the three comparisons
1 ≺2 2, 2 ≺2 3 and 3 ≺2 12, and hence ≺ =≺0 × ≺2∈



L∗
4 is determined by 12 ≺ 3, 13 ≺ 4 and 14 ≺ 23.

The 14 members of L∗
4 are listed in [5]. Here we list

the minimal set of determining binary comparisons
for each.

1. 2 ≺ 3, 3 ≺ 4, 4 ≺ 12, 14 ≺ 23,

2. 1 ≺ 2, 2 ≺ 3, 4 ≺ 12, 23 ≺ 14,

3. 3 ≺ 12, 12 ≺ 4, 4 ≺ 13, 14 ≺ 23,

4. 1 ≺ 2, 3 ≺ 12, 12 ≺ 4, 4 ≺ 13, 23 ≺ 14,

5. 12 ≺ 3, 3 ≺ 4, 4 ≺ 13, 14 ≺ 23,

6. 1 ≺ 2, 12 ≺ 3, 4 ≺ 13, 23 ≺ 14,

7. 2 ≺ 3, 3 ≺ 12, 13 ≺ 4, 14 ≺ 23,

8. 2 ≺ 3, 3 ≺ 12, 13 ≺ 4, 4 ≺ 23, 23 ≺ 14,

9. 12 ≺ 3, 13 ≺ 4, 14 ≺ 23,

10. 12 ≺ 3, 13 ≺ 4, 4 ≺ 23, 23 ≺ 14,

11. 1 ≺ 2, 2 ≺ 3, 3 ≺ 12, 23 ≺ 4, 4 ≺ 123,

12. 1 ≺ 2, 2 ≺ 3, 3 ≺ 12, 123 ≺ 4,

13. 1 ≺ 2, 12 ≺ 3, 23 ≺ 4, 4 ≺ 123,

14. 1 ≺ 2, 12 ≺ 3, 123 ≺ 4.

In this list every order determined by 4 comparisons
is irreducible, and therefore all 11 orders determined
by ≤ 4 binary comparisons can be extended to orders
in L∗

5 determined by exactly 4 binary comparisons.
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