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Abstract

The paper presents an efficient solution to decision
problems where direct partial information on the dis-
tribution of the states of nature is available, either
by observations of previous repetitions of the decision
problem or by direct expert judgements.
To process this information we use a recent general-
ization of Walley’s imprecise Dirichlet model, allowing
us also to handle incomplete observations or imprecise
judgements. We derive efficient algorithms and dis-
cuss properties of the optimal solutions. In the case
of precise data and pure actions we are surprisingly led
to a frequency-based variant of the Hodges-Lehmann
criterion, which was developed in classical decision
theory as a compromise between Bayesian and mini-
max procedures.
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1 Introduction

In real decision situations decision makers have on-
ly limited information about probability distributions
involved in the problem, and decision analysis is as-
sociated with large uncertainty. As a result, decision
makers are often confronted with the problem that the
very demanding and strong conditions of the classical
probability calculus, and the decision models based
on it, are often not satisfied. In these cases it is nat-
ural to ask how to take into account the limitation
of information and what conclusions can be drawn on
the basis of such limited information.

Various tools for a more general and sophisticated un-
certainty representation can be found in the litera-
ture, including Dempster-Shafer structures [16, 38],

interval-valued probabilities [47], imprecise probabili-
ties [30, 45], etc. The corresponding decision making
models have been developed in accordance with the
different types of the uncertainty representation (e.g.,
[1, 3, 18, 33, 21, 34, 39, 43, 49].) These models al-
low to handle partial information on the stochastic
behaviour on the state of nature.
Here we take explicitly into account the construc-
tion of the information and consider decision prob-
lems where direct data on the states are available.
The data are of multinomial structure, consisting of
independent categorical observations. As usual, re-
al values can be associated with the observations as
long as the ordering in these values is not understood
as providing additional information. In addition, the
model seems also to be suitable for processing expert
judgements, as long as they are based on independent
sources of information.

A particular attractive feature of our method is that
it will prove able to incorporate even set-valued ob-
servations, i.e., to handle situations where the corre-
sponding category can not be observed exactly and
is only known to belong to a certain subset of the
sample space. This is an important issue in many
applications, but up to now there is no unique termi-
nology. Depending on the context, different terms are
common, like ’coarse data’, or ’incomplete data’, to
denote such data sets as a whole, and ’imperfect mea-
surement’ or ’interval-valued observations’, to denote
the single set-valued observations.

To process (complete) multinomial data a Bayesian
would recommend to use the Dirichlet model (for ease
of distinction called precise Dirichlet model (PDM) in
the sequel). The PDM has been widely adapted to
many applications due to interesting statistical prop-
erties, in particular, due to the important fact that
the Dirichlet density functions constitute a conjugate
family of density functions with respect to multinomi-
al likelihoods. A very promising generalization of the
PDM, taking into account lack of prior information,



is Walley’s imprecise Dirichlet model (IDM), (cf. [46];
for a recent survey of applications see [7]).

This paper applies the IDM to decision making and
derives simple algorithms for computing optimal ran-
domized and pure actions. The method developed
solves two practically important problems that can
not be addressed by any of the classical approaches
to decision theory in a satisfying manner: First of
all, relying on the IDM enables us to take into ac-
count explicitly that the number of judgements or
measurements may be rather small, i.e. much too
small for being able to apply asymptotic arguments,
based on the consistent estimation of the distribution
of the states of nature. Secondly, we allow information
about states of nature to be represented by imprecise,
i.e, for instance, interval-valued observations or mea-
surements. It turns out that this general case can be
handled by considering a set of IDMs, which interest-
ingly leads to some extension of the decision problem
[34, 39, 49, 21] using Dempster-Shafer theory for un-
certainty representation.
The paper is organized as follows: In Section 2 we
formulate the problem under consideration more pre-
cisely. After having recalled some basic aspects of the
imprecise Dirichlet model in Section 3, we apply it in
Section 4 to the decision problem. In Section 5 we de-
rive algorithms to determine the optimal randomized
and unrandomized actions under a pessimistic crite-
rion relying of strict ambiguity aversion. Section 6
extends consideration to imprecise observations and
judgements. Close relations to Dempster-Shafer de-
cision making will be illuminated, and a numerical
example will be analyzed. Section 7 glances at more
complex decision criteria and Section 8 concludes with
some final remarks.

2 Statement of the decision problem

Consider the basic model of decision theory: One
has to choose an action from a non-empty, finite set
A = {a1, . . . , ar, . . . , an} of possible actions. The con-
sequences of every action depend on the true, but un-
known state of nature ω ∈ Ω = {ω1, . . . , ωj , . . . , ωm}.
The corresponding outcome is evaluated by the utility
function u : (A × Ω) → R, (a, ω) 7−→ u(a, ω) and by
the associated random variable u(a) on (Ω,Po(Ω))
taking the values u(a, ω).1 Often it makes sense to
study randomized actions, which can be understood
as a probability measure λ = (λ1, . . . , λr, . . . , λn)
on (A,Po(A)). Then u(·) and u(·) are extend-
ed to randomized actions by defining u(λ, ω) :=∑n

r=1 u(ar, ω)λr.

1Alternatively a loss function l(a, ω) is assigned, which can
be embedded into the framework proposed by setting u(a, ω) =
−l(a, ω).

This model contains the essentials of every (formal-
ized) decision situation under uncertainty and is ap-
plied in a huge variety of disciplines. If the states
of nature are produced by a perfect random mecha-
nism (e.g. an ideal lottery), and the corresponding
probability mass function π(·) on the sample space Ω
is completely known, then the Bernoulli principle is
nearly unanimously favored. One chooses that action
which maximizes the expected utility

Eπu(ar) := Eπur =
m∑

j=1

u(ar, ωj) · π(ωj) (1)

among all r = 1, ..., n. For simplicity, the obvious
constraints λj ≥ 0 will be omitted in most places,
and we denote

πj := π(ωj), urj := u(ar, ωj),ur := min
j=1,...,m

urj ,

ur := max
j=1,...,m

urj , 1 := (1, ..., 1)T.

.

Here we aim at developing a powerful method to solve
such decision problems when π(·) is not known, but
– potentially imprecise – data from previous repeti-
tions or expert judgements are available. If one had
infinitely many – precise – observations, one would be
able to apply the Bernoulli principle based on a con-
sistent plug-in estimator of π(·). In applications this
is rarely feasible and alternative methods are needed
taking into account the lack of complete information
explicitly. Therefore, we base our proposal on Wal-
ley’s IDM [46], and a recent generalization of it [42].

3 Walley’s imprecise Dirichlet model

The observations ωj are assumed to be categorical
and unordered, and to be independently and identical-
ly distributed. Then the corresponding multivariate
random quantity counting the number of occurrences
of the j-th category possesses a multinomial distribu-
tion with parameter vector π. In a Bayesian setting
the corresponding conjugated prior is the (precise)
Dirichlet (s, t) prior distribution (e.g. [15]), where
t = (t1, ..., tm) is a certain element of the interior
of the unit simplex denoted by S(1,m).The parame-
ter ti ∈ (0, 1), i = 1, . . . , m is the mean of πi under
the Dirichlet prior; the hyperparameter s > 0 deter-
mines the influence of the prior distribution on poste-
rior probabilities. When multiplied with multinomi-
al likelihood function, the Dirichlet (s, t) prior den-
sity generates the Dirichlet (N + s, t∗) density with
t∗j = (nj + stj)/(N + s).

An important argument against the use of the PDM is
that – at least without a huge amount of observations



– inferences depend on the value of t to be fixed in
advance, typically without having sufficient informa-
tion to guide the choice. Moreover, there is the desire
for a model where the predictive probabilities used in
decision making directly reflect the sample size, i.e.
the amount of statistical information available.

Both problems are solved by the imprecise Dirichlet
model as defined by Walley [46]. It avoids unjusti-
fiable prior assumption by relying on the set of all
Dirichlet (s, t) distributions such that t ∈ S(1,m),
and the inferences depend – via the width of the in-
tervals for the predictive probability obtained – on the
sample size. In the IDM, there is a hyperparameter s
determining how quickly upper and lower probabili-
ties of events converge as statistical data accumulate.
s can be interpreted as the number of observations
needed to reduce the imprecision (i.e., the difference
between upper and lower probabilities) to half its ini-
tial value, or as the notional number of yet unseen ob-
servations. Consequently, smaller values of s produce
faster convergence and stronger conclusions, whereas
large values of s produce more cautious inferences. At
the same time, the value of s must not depend on m
or the number of observations. A detailed discussion
concerning the parameter s and the IDM can be found
in particular in [7, 46].

Let A be any non-trivial subset of the sample space
Ω = {ω1, ..., ωm}, i.e., A is not empty and A 6= Ω, and
let n(A) denote the observed number of occurrences of
A in N trials, n(A) =

∑
ωj∈A nj where nj := n({ωj}).

The predictive probability P (A|n, t, s) under a certain
Dirichlet posterior distribution is

P (A|n, t, s) =
n(A) + st(A)

N + s
,

where t(A) :=
∑

ωj∈A tj . It should be added that
P (A|n, t, s) = 0 if A is empty, and P (A|n, t, s) = 1 if
A = Ω. By maximizing and minimizing P (A|n, t, s)
over t ∈ S(1,m), Walley [46] obtains the posterior
lower and upper predictive probabilities of A as:

P (A|n, s) =
n(A)
N + s

, P (A|n, s) =
n(A) + s

N + s
.

4 Decision making by using the
imprecise Dirichlet model

As a preparation, let us briefly consider an approach
for decision making under the condition that π obeys
to the PDM and there are perfect observations of
states of nature, namely the numbers (n1, ..., nm) of
occurrences of ω1, ..., ωm in the N trials. By relying
on Bayesian methodology, the expected utility of an

action λ is calculated as follows:

Eu(λ) =
∫

S(1,m)

m∑

i=1

(u(λ, ωi) · πi) p(π)dπ

=
m∑

i=1

u(λ, ωi) ·
∫

S(1,m)

πip(π)dπ =
m∑

i=1

u(λ, ωi) · Epπi,

where Epπi = ni+sti

N+s ,finally resulting in

Eu(λ) =
m∑

i=1

u(λ, ωi)
ni + sti
N + s

. (2)

Passing over to the IDM leads to lower and upper
expected utilities arising from the following optimiza-
tion problems:

Eu(λ) = inf
t∈S(1,m)

Eu(λ), Eu(λ) = sup
t∈S(1,m)

Eu(λ).

In literature several criteria have been suggested to
compare the interval-valued expected utility

[Eu(λ),Eu(λ)] (3)

of actions λ (see, in particular, the recent survey by
[41] and [44], who give further references).2 The first
branch, like the criterion of maximality (as proposed
by [45]) or the concept of E-admissibility (advocated
by [31], [35]), renounces the completeness of the or-
dering and generalizes the concept of admissibility by
distinguishing a set of actions as being not inferior.

On the other hand, often a complete ordering of the
actions is desired, and the interval-valued expected
utility eventually has to be transformed to the real
line. The most conservative choice is to be strictly
ambiguity averse, concentrating on the lower interval
limit only. (Section 5 and Section 6.1 will rely on this
criterion, while Section 7 briefly will consider alterna-
tive criteria.)

5 Decision making under strict
ambiguity aversion

Under strict ambiguity aversion an action is optimal
iff for all λ the inequality Eu(λ∗) ≥ Eu(λ) is satis-
fied.3 An algorithm is described in

2For rigorous axiomatic justification of generalized expected
utility in the sense of (3) and different criteria derived from it
see among others [19] and [20], as well as the references therein,
who manage to extend Neumann-Morgenstern and Anscombe-
Aumann theory to the situation of complex uncertainty with
partial prior information.

3This criterion has been proposed under different names. It
corresponds to the Gamma-Minimax criterion (as considered,
e.g., in [5, Section 4.7.6]), to the Maxmin expected utility model
([22]), to the MaxEMin criterion investigated by [28] (cf. also
[29] and the references therein) and the notion of maximinity in
[45]. In the case of two-monotone capacities it is equivalent to
maximizing Choquet expected utility (as studied, e.g., in [9]).



Proposition 1 The optimal randomized action λ∗

satisfying the inequality Eu(λ∗) ≥ Eu(λ) for all λ
is determined by solving the following linear program-
ming problem:

max
λ,G

G (4)

subject to G ∈ R, λ · 1 = 1, and for j = 1, ..., m,

G ≤ 1
N + s

n∑
r=1

λr

(
s · urj +

m∑

i=1

uri · ni

)
. (5)

Proof. It follows from (2) that λ∗ is found by con-
sidering

inf
t∈S(1,m)

m∑

i=1

n∑
r=1

uriλr · ni + sti
N + s

→ max
λ

. (6)

subject to λ · 1 = 1. For solving this problem, let
us adapt [1, 3], who suggested to introduce a new
variable G = inft∈S(1,m) Eu(λ). Then problem (6) is
equivalent to a problem with objective function (4)
and with the infinite number of constraints

G ≤
m∑

i=1

n∑
r=1

uriλr · ni + sti
N + s

, t ∈ S(1,m), (7)

and G ∈ R, λ · 1 = 1. Following [1, 3] further, note
that the constraints are already satisfied, if they are
satisfied for all extreme points of the convex sets
of distributions defined by P (·|n, s) and P (·|n, s),
which are simply obtained by considering the ex-
treme points of S(1,m). The latter have the form
(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1). Therefore, (7)
is reduced to the set of m linear constraints described
in (5), as was to be proven.4

Restricting λr to be either 0 or 1 optimal unrandom-
ized actions are obtained via

Corollary 1 The optimal unrandomized action (pure
action) a∗ satisfying the inequality Eur ≥ Euk for
all k = 1, ..., n is determined by solving the following
problem:

1
N + s

(
m∑

i=1

urini + s · ur

)
→ max

r=1,...,n
. (8)

It can be seen from (8) that the objective function
is nothing else but a mixture of two criteria: the cri-
terion of maximum expected utility, with probabil-
ities π({ωi}) replaced by the corresponding relative
frequency ni/N , and Wald’s criterion. The weights
N/(N + s) and s/(N + s), respectively, are directly

4An alternative proof can rely on total monotonicity of the
lower interval limit derived from the IDM and use (10), again
circumventing minima by auxiliary variables.

connected to the uncertainty involved, depending on
the hyperparameter s and the sample size N . Con-
sequently, when N = 0, i.e., before any observation
on the states of nature is available, Wald’s criterion
is used. On the other hand, when the sample size
tends to infinity, i.e. when there are enough data
to estimate π(·) consistently, expected utility based
on the estimate of π(·) is used. In this sense, (8) is
a frequency-based type of Hodges-Lehmann criterion
(cp. [26]), which has been proposed in classical de-
cision theory as a compromise between the Bayesian
and the minimax approach. — Equation (8) also
provides a behaviourial interpretation of the hyperpa-
rameter s: In principle, one could develop canonical
examples to determine a decision maker’s value of s
in an experimental manner.

A closer investigation of (8) shows, however, also a
possibly unwanted effect. When the utility function
is such that ur is the same for all actions ar then the
second summand in (8) does not matter and

∑
uri·ni

N+s
is maximized, which distinguishes the same action as
optimal as the naive frequentist approach where in
(6) the probability π(·) is replaced by the vector of
observed relative frequencies. – Note that, in princi-
ple, such a situation can always be constructed, by
adding a “bad” state of nature ω0 (like “crash of
the economic system” in the example in Section 6.4)
which has constant utility u0 for all actions such that
u0 < minr,i uri. This means that – just as in minimax
theory – special attention has to be paid to careful
selection of the states of nature that are taken into
consideration. To turn it into other – even more tren-
chant – words: in decision theory the IDM’s property
of satisfying the embedding principle is lost.

6 Decision making under incomplete
data

Now consideration is extended to the practically quite
important case of imprecise observations, where ob-
servations may be too vague to be associated with a
certain singleton {ωj}. Instead it is only known that
the realized state of nature lies in some subset Ai ⊆ Ω,
see, for instance, [25] for examples in the biometric
context. Heitjan and Rubin, who have coined the
term coarsened for such data, derive in [24] – rather
severe – conditions under which the coarsening may
be ignored. Blumenthal (cf. [8]) discusses a multi-
nomial model under the additional assumption that
the probability distribution of the coarsening process
is known.

However, quite often Heitjan and Rubin’s so-called
coarsening at random assumption is violated and
straightforward analysis may be heavily biased. The



same applies, as the simulations in [32] show, when
the typically unknown distribution in Blumenthal’s
model is misspecified. Therefore a thorough analysis
without relying on unjustified assumptions is highly
desirable. Several authors, among them [40], have un-
derstood Dempster-Shafer belief functions / random
sets as an appropriate tool to model such situations:
they use empirical belief functions (see below) based
on relative frequencies of the observed subsets Ai for
the analysis. Although then imprecision in the ob-
servations is taken into account, still a severe bias
may occur, because this way to proceed neglects –
by implicitly equating relative observed frequencies
and probabilities – finite sample variation, which may
have, as argued above and in the end, a strong dis-
torting effect, too.

6.1 Extended empirical belief functions

In order to handle both sources of potential bias –
imprecision in the observations as well as the limited
sample size – we rely on a model recently developed
by [42], which, in essence, considers all multinomial
models compatible with the data and will lead to a
powerful extension of empirical belief function.

To be a bit more precise (for a detailed account see
[42]): Data consist now of ci observations of the sub-
set Ai ⊆ Ω, i = 1, ...,M , such that

∑M
i=1 ci = N .

Furthermore, it is helpful to introduce sets Ji denot-
ing the set of indices of states of nature belonging to
Ai, i.e. Ai = {ωj : j ∈ i}. Evidently the standard
case is included: there all available subsets consist of
single elements, i.e., Ai = {ωj} and Ji = {j}.
Translating the situation into an urn model, we have
m urns ω1, . . . , ωm (corresponding to the states of na-
ture), where ωi consists of ball with number i. Relying
on the notation just introduced we randomly choose
subsets Ai of urns and take randomly ci balls from
the urns numbered by elements of Ji. Given M , there
exist different possible combinations k = 1, . . . ,K of
numbers of balls taken from the urns. Denote the k-
th possible vector of balls by n(k) = (n(k)

1 , . . . , n
(k)
m ),

where nk
l , l = 1, . . . , m is the number of balls with col-

or l drawn in the M choices, and let c = (c1, . . . , cn).
Assuming that the subsets Ai are independently cho-
sen from the set of all subsets of Ω and that the prob-
ability of selecting a ball from the j-th urn is πj , every
combination of balls produces one standard multino-
mial model. A number of possible combinations of
balls produce the same number of standard multino-
mial models. Moreover, we can not prefer one model
over another5.

5It should be noted that the set of possible vectors of balls
n(k) produced by interval-valued observations is very closely re-

Since we have a set of vectors n(k), then even if we
know precisely the conditional probabilities P (A|n(k))
for every event A in Ω and every possible vector n(k),
still we can only compute lower and upper probabili-
ties for events A:

P (A|c) = min
k

P (A|n(k)), P (A|c) = max
k

P (A|n(k)).

As the vectors n(k) depend on c, the resulting lower
and upper probabilities (after minimizing and maxi-
mizing P (A|n(k))) depend on c, and so they are de-
noted by P (A|c) and P (A|c).
In the case of multinomial samples, the PDM as a
prior distribution on the probabilities P (ωj) = πj ,
j = 1, ..., m, is the traditional choice. However, using
the IDM allows us to take into account lack of pri-
or information and the possible fact that the number
of observations Ai may be rather small. Then the
lower and upper probabilities P (A|c, s) and P (A|c, s)
of an event A, corresponding to a set of indices
J ⊆ {1, . . . , m}, are computed as follows:

P (A|c, s) =
min

k
n(k)(A) + s · inf

t∈S(1,m)
t(A)

N + s
,

P (A|c, s) =

max
k

n(k)(A) + s · sup
t∈S(1,m)

t(A)

N + s
.

where t(A) :=
∑

j∈J tj , n(k)(A) :=
∑

j∈J n
(k)
j .

It can be shown that the resulting lower and upper
probabilities of A can be obtained from the observa-
tions A1, ...AM and c1, ...cM as follows:

P (A|c, s) =

∑

i:Ai⊆A

ci

N + s
, P (A|c, s) =

∑

i:Ai∩A 6=∅
ci + s

N + s
.

(9)

For a closer investigation of these results, it is
beneficial to consider them within the framework of
Dempster-Shafer theory (e.g. [16, 38]): With [32] we
call a basic probability assignment m : Po(Ω) → [0, 1],
with m(∅) = 1,

∑
A∈Po(Ω)m(A) = 1 and the corre-

sponding belief Bel(A) and plausibility Pl(A) func-
tions with Bel(A) =

∑
Ai:Ai⊆Am(Ai), P l(A) =

1 − Bel(Ac) empirical, when m(Ai) = ci

N based on
a vector c1, ...cn of

∑M
i=1 ci = N observations of

Ai ⊆ Ω, i = 1, ...n. It is easy to see that the lower
and upper probabilities (9) relate to these belief and

lated to the set of all possible completions of missing attributes
in models of missing data proposed by de Cooman and Zaffalon
[13, 50]. Moreover, the set of possible completions of missing
attributes coincide with the set of n(k) when the observations
are of a special type.



plausibility functions6 in the following way:

P (A|c, s) =
N ·Bel(A)

N + s
, P (A|c, s) =

N · Pl(A) + s

N + s
.

Moreover, P (A|c, s) and P (A|c, s) are belief and plau-
sibility functions again, namely with the basic prob-
ability assignment m∗(Ai) = ci/(N + s) for every
Ai and the additional basic probability assignment
m∗(A∞) = s/(N + s), i.e., P (A|c, s) and P (A|c, s)
can be obtained as empirical belief and plausibility
functions under the condition that there are s addi-
tional observations A∞ = Ω. With m(Ai) = ci/N
representing the standard empirical assignment, we
have m∗(Ai) = m(Ai) ·N/(N +s), and, for all A 6= Ω,

P (A|c, s) =
∑

i:Ai⊆A

m∗(Ai),

P (A|c, s) = m∗(A∞) +
∑

i:Ai∩A 6=∅
m∗(Ai),

which we call extended empirical belief and plausibil-
ity functions.

6.2 Decision making with extended
empirical belief functions

Since the extended empirical belief functions arising
from imprecise information about states of nature are
belief functions, we can use the approach introduced
by [39], which directly relies on belief functions based
on some basic probability assignment m(·). Then the
lower expected utility can be found as

Eu(λ) =
∑

Ak⊆Ω

m(Ak) · min
ωi∈Ak

u(λ, ωi). (10)

In the situation under consideration described by the
basic probability assignment m∗(·), this can be rewrit-
ten as follows:

Eu(λ) =
s

N + s
·min
ωi∈Ω

u(λ, ωi)+
M∑

k=1

ck

N + s
· min
ωi∈Ak

u(λ, ωi).

Efficient handling of the resulting decision problem is
summarized in

Proposition 2 If the probabilities of m states of na-
ture are described by the imprecise Dirichlet model
with the hyperparameter s and information about the
states is represented in the form of ci subsets Ai =
{ωj : j ∈ Ji}, i = 1, ...,M , such that

∑M
i=1 ci = N ,

then the optimal randomized action λ∗ satisfying the
inequality Eu(λ∗) ≥ Eu(λ) for all λ is determined by

6A detailed study of belief functions derived from the im-
precise Dirichlet model is presented in [42].

solving the following linear programming problem:7

1
N + s

(
s · V0 +

M∑

k=1

ck · Vk

)
→ max

λ
,

subject to V0, Vi ∈ R, λ · 1 = 1,

Vi ≤
n∑

r=1

λrurj , i = 1, ...,M, j ∈ Ji,

V0 ≤
n∑

r=1

λrurj, j = 1, ..., m.

Proof. We introduce new variables Vi =
minj∈Ji

u(λ, ωj), i = 1, ..., M , and V0 =
minj=1,...,m u(λ, ωj), and substitute them into the ob-
jective function (6.2). Constraints to the optimiza-
tion problem are derived from the definition of Vi,
i = 0, ..., M .

The extension of Corollary 1 to the situation under
consideration is provided by

Corollary 2 The optimal unrandomized action (pure
action) a∗ satisfying the inequality Eur ≥ Euk for all
k = 1, ..., n is determined by solving:

1
N + s

(
s · ur +

M∑

k=1

ck · min
ωi∈Ak

uri

)
→ max

r=1,...,n
. (11)

Proof. If λr ∈ {0, 1}, then Vk = minωi∈Ak
uri and

V0 = ur due to conditions s ≥ 0 and ck ≥ 0.

6.3 Some additional remarks

Before we illustrate our approach in a short example,
some additional remarks may be appropriate. Firstly,
in Remark 1 and Remark 2, equivalent alternative
ways to proceed should be briefly mentioned. After
that the advantages of the extended modelling will be
demonstrated in some extreme cases.

Remark 1 The above results could be also obtained
without using the argumentation via belief functions.
Indeed, the set of multinomial models considered in
Subsection 6.1 produces a set of expected utilities
E(k)u(λ) such that the lower expected utility is

Eu(λ) = min
k

inf
t∈S(1,m)

E(k)u(λ)

= min
k

inf
t∈S(1,m)

m∑

i=1

u(λ, ωi) · n
(k)
i + sti
N + s

.

7The problem considered in Proposition 2 has
∑M

i=1 |Ji| +
m+n+1 linear constraints and 2m+1 optimization variables.
(Here |Ji| denotes the cardinality of the set Ji.) If all the
subsets Ai consist of the single elements ωi, resulting in ci = ni,
and M = m, then we get back, after simple transformations,
the special case studied in Section 4.



This way leads to the same results, but it allows us to
get several forms of linear programming problems for
computing the optimal randomized action λ∗.8

Remark 2 Since the information about states of na-
ture is represented by means of lower P (A|c, s) and
upper P (A|c, s) probabilities of all events A ∈ Ω, the
decision problem can also be solved by means of the
approach proposed by [1, 3], where the extreme points
needed can be directly derived from the corresponding
basic probability assignment m∗(·).

One of the main shortcomings of using standard em-
pirical belief functions in decision making is that they
assign zero probabilities to yet unobserved states of
nature. If we had an infinite number of observations,
then the fact of zero probabilities could be accept-
ed. However, if we have a finite number of observa-
tions (and more often quite a small number), then
it can be subjected to criticism. To show that this
fact may indeed lead to controversial results, con-
sider the following decision problem: A = {a1, a2},
Ω = {ω1, ω2}, the utility function is u11 = −1000,
u12 = 1, u21 = u22 = 0. Suppose that there is only
one judgment (M = 1) such that A1 = {ω2}. Ac-
cording to the model relying on s = 0, we can write
Eu1 = 1 and Eu2 = 0. Hence the optimal action is a1,
i.e. under almost complete ignorance, where we natu-
rally intend to search for the pessimistic solution, we
make the optimistic decision because the model us-
ing standard empirical belief functions presumes that
the probability of state ω1 is 0, and so it acts as if
this state could never be observed. However, if we
take s > 0, say s = 1, then Eu1 = (−1000 + 1)/2 =
−499.5 and Eu2 = 0. Hence the optimal action is a2,
showing that the IDM provides a way to avoid this
shortcoming.

A related, again rather problematic issue of standard
empirical belief functions is that the assignments do
not depend on the sample size and therefore – the
potentially very high – finite sampling variation is ne-
glected: Consider, for instance, two samples taken
from the same sample space, one with n = 2, the other
one with n = 200000.9 If in the first case n1 = 1 = n2,
and in the second one n1 = 100000 = n2, then the
relative frequencies for the states 1, 2 are 1/2 each,
in both cases, and therefore also the standard belief
functions derived from them are the same, not distin-
guishing these substantially different situations. In

8As another alternative, the resulting lower and upper prob-
abilities can be interpreted as arising from a special type of
a generalized basic probability assignment in the sense of [4],
constructed from the set of IDMs that are derived from the
different possible observations.

9To focus on the essential point of the argument we further
assume that all observations are precise.

Table 1: Values of the utility function urj

States of nature
Actions ω1 ω2 ω3 ω4

bonds a1 6 9 9 8
stocks a2 12 7 3 −2
deposit a3 7 7 7 7

contrast, the extended belief function approach takes
into account that the second information is build on
a much stronger basis: the imprecision in the assign-
ment arising from the second situation is much less.

The problem becomes in particular drastic, when we
return to a situation with unobserved states of na-
ture and consider again the numerical example given
above. If we have l identical estimates of the second
state of nature, then

Eu1 = −1000 · s
l + s

+
l

l + s
, Eu2 = 0.

When s = 0 then neither Eu1 = 1 nor Eu2 = 0 de-
pend on l. That is, our decision, a2 is the same if
we have 1 observation (almost complete ignorance) or
10000 identical observations (sufficient statistical da-
ta). If we take s = 1, then a2 is only superior when
l > 1000.

6.4 Numerical example

Consider the following well-known investment
decision-making example. The states of nature are
the states of economy during one year: growth - ω1,
medium growth - ω2, no change - ω3, low - ω4. The
problem is to decide to choose an action from three
possible courses of action with the given rates of
return as shown in the body of Table 1.

Suppose that three experts, relying on independent
sources of information10, supply the following judg-
ments concerning the states of economy: two experts
(c1 = 2) believe that the state of economy will be
“growth” or “medium growth” (A1 = {ω1, ω2}), one
expert (c2 = 1) supposes that the state of econo-
my will be “no change” or “medium growth” (A2 =
{ω2, ω3}). So, M = 2, N = 3.
Let us find the optimal randomized action maximizing
the lower expected utility under condition s = 1. By
using Proposition 2, we write the following problem:

max
λ∈R3

+,Vi∈R
1

3 + 1
(1 · V0 + 2 · V1 + 1 · V2)

10The assumption of independence is crucial for direct ap-
plications of the multinomial likelihood underlying the IDM.
Relaxations of this assumption are currently under investiga-
tion.



subject to λ1 + λ2 + λ3 = 1 and

V1 ≤ 6λ1 + 12λ2 + 7λ3 V0 ≤ 6λ1 + 12λ2 + 7λ3

V1 ≤ 9λ1 + 7λ2 + 7λ3 V0 ≤ 9λ1 + 7λ2 + 7λ3

V2 ≤ 9λ1 + 7λ2 + 7λ3 V0 ≤ 9λ1 + 3λ2 + 7λ3

V2 ≤ 9λ1 + 3λ2 + 7λ3 V0 ≤ 8λ1 − 2λ2 + 7λ3

Hence V0 = 27/4, V1 = 27/4, V2 = 33/4, λ∗1 = 7/8,
λ∗2 = 1/8, λ∗3 = 0. The optimal lower expected utility
is 7.125.

Let us find now the optimal unrandomized action. By
using (11) we get Eu1 = 6.75, Eu2 = 3.75, Eu3 = 7.
This implies that the third action is optimal.

It should be noted that, by taking s = 0, the opti-
mal randomized action would be λ∗1 = 5/8, λ∗2 = 3/8,
λ∗3 = 0, with an optimal lower expected utility of 7.75.
At a first glance one might be tempted to say that the
decision based on s = 0 would be better than that
based on s > 0 because the lower expected utility in
the case s = 0 is greater than the expected utility
based on s = 1. However, as discussed in the pre-
vious subsection, this decision is incautious because
it does not take into account the fact that the num-
ber of judgments is very small (N = 3). The optimal
unrandomized action by s = 0 is not unique because
Eu1 = Eu3 and Eu2 < Eu1 in this case.

7 Other optimality criteria

In this paper up to now only one particular – quite
pessimistic – optimality criterion has been studied.
As a considerable improvement a more complex crite-
rion of decision making based on a linear combination
of lower and upper expectations with the so-called
caution parameter η ∈ [0, 1] (cp., e.g., [17, 36, 47])
can be considered. The caution parameter reflects
the degree of ambiguity aversion; the more ambiguity
averse the decision maker is, the higher is the influence
of the lower interval limit of generalized expected util-
ity. η = 1 corresponds to strict ambiguity aversion,
η = 0 expresses maximal ambiguity seeking attitudes.
Methods for the choice of η are considered in detail
by [36]. In this case, a pure action ak is distinguished
as optimal iff for all r ∈ {1, ..., n}

ηEuk + (1− η)Euk ≥ ηEur + (1− η)Eur .

The lower expected utility Eur is computed by means
of (11). The upper expected utility Eur can be found
in the same way

Eur =
1

N + s

(
s · ur +

M∑

k=1

ck ·max
i∈Jk

uri

)
.

Hence, with Hr := ηEur + (1− η)Eur,

Hr =
s

N + s
(ηur + (1− η)ur)

+
1

N + s

(
M∑

k=1

ck

(
η min

i∈Jk

uri + (1− η) max
i∈Jk

uri

))
.

It can be seen that the algorithm for computing the
optimal action taking into account both lower and up-
per expected utilities is similar to the approach pro-
posed in Section 2. However, it should be noted that
the randomized action can not be found in the same
simple way and efficient algorithms for solving this
problem are currently investigated (see also Section 4
of [44]).

Of course, also criteria not necessarily producing a
linear ordering of the actions deserve attention (cf.
Section 4 above). [44, Section 5] proposes a gener-
al method to determine actions in the sense of [45],
which can – in the light of Remark 2 – also be used
here. In this context it may be briefly noted that the
remark from the end of Section 5 still applies: Even
under E-admissibility and maximality complex crite-
rion like the IDM’s property of satisfying the embed-
ding principle is lost, making the careful choice of the
set Ω of possible states a delicate task.11

8 Concluding remarks

A method for decision making using the IDM under
imprecise information has been proposed in this pa-
per. This approach can also be regarded as some
extension of a procedure relying on empirical belief
functions. The considered special cases and the nu-
merical example have shown that the method is rea-
sonable even in cases when the number of possible im-
perfect measurements or interval-valued judgments is
very small.

Next to the handling of more sophisticated optimality
criteria further research should also include a compar-
ison with other attempts to model the processing of
multinomial observations under lacking prior knowl-
edge ([10], [48]) and an alternative decision theoretic
approach where the sampling information is handled
by decision functions, the more as the use of posteri-
or distributions, as underlying the IDM, is no longer
self-evidently justified in imprecise probability theory
([2], see also [27], [37], [23] for related issues.)

11For an easy counterexample consider parts of the utility
table from Section 6.4, based on the two different sample spaces
Ω1 := {ω1, ω2} and Ω2 := {ω1, ω2, ω3}. With data c1 = c2 =
1 and s = 1 action a1 is neither E-admissible nor maximal,
when Ω1 is considered, but optimal when Ω2 is considered. —
However, the violation of the embedding principle seems to be
milder here: actions that are optimal remain optimal under
refinements of the sample space with respect to yet unobserved
categories.
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