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Abstract

In this paper we consider interval-valued conditional
probability assessments on finite families of condi-
tional events. Based on the coherence principle of
de Finetti, we give some preliminary results on pre-
cise and imprecise probability assessments, by recall-
ing the properties of avoiding uniform loss (AUL),
which coincides with the notion of g-coherence, and
of coherence introduced by Walley. Among other re-
sults, we generalize to interval-valued assessments a
connection property, obtained in a previous paper, for
the set II,, of precise coherent assessments on a fam-
ily F,, of n conditional events. More specifically, we
prove that, with any pair of AUL interval-valued as-
sessments X/, X, on F,, we can associate an infinite
class X of AUL interval-valued imprecise assessments
which are convex combination between X/ and X/
and connect them. Then, we examine the extension
of g-coherent imprecise assessments. We also give a
result on totally coherent imprecise assessments, by
examining its relationship with a necessary and suffi-
cient condition of total coherence for interval-valued
assessments.

Keywords: conditional events, g-coherence, avoid-
ing uniform loss, coherence, interval-valued probabil-
ity assessments, connection property, total coherence.

1 Introduction

The probabilistic treatment of uncertainty plays a rel-
evant role in many applications of Artificial Intelli-
gence, e.g. uncertain reasoning. In such applications
typically the set of uncertain quantities at hand has no
particular algebraic structure; moreover, the experts
may have a vague and partial information. Then, a
flexible approach can be obtained by using imprecise
probabilities, based on a suitable generalization of the
coherence principle of de Finetti, or on similar princi-
ples like that ones adopted for lower and upper prob-
abilities ([1], [3], [4], [5], [7], [10], [11], [12], [13]).
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In this paper we examine interval-valued probability
assessments on finite families of conditional events.
We use a notion of generalized coherence which co-
incides with the property of avoiding uniform loss
(AUL) introduced by Walley ([12]). We also recall
how we can determine the coherent (in the sense of
Walley) interval-valued assessment associated with a
given AUL assessment (then, the theoretical results
obtained for g-coherent assessments can be suitably
adapted to coherent ones; in the paper we explic-
itly consider only the case of AUL, i.e. g-coherent,
interval-valued assessments).

We recall some recent results on precise probability
assessments ([2]). Then, we generalize such results to
interval-valued assessments; in particular, we consider
a connection property of the set II,, of precise coher-
ent assessments on a family F,, of n conditional events
and we generalize this property to interval-valued as-
sessments. More specifically, we prove that, with
any pair of AUL interval-valued assessments X, X/
on F,, we can associate an infinite class X of AUL
interval-valued imprecise assessments which connects
X! and X. Then, based on such result, we exam-
ine the extension of g-coherent imprecise assessments.
We also give a result on totally coherent set-valued
probability assessments on F,, and we examine its re-
lationship with a necessary and sufficient condition of
total coherence for interval-valued assessments.

The paper is organized as follows. In Section 2 we
recall some preliminary notions and results. In par-
ticular, in sub-section 2.1 we consider the case of
precise probability assessments; in sub-section 2.2 we
consider the case of interval-valued probability assess-
ments. In Section 3 we make some remarks on avoid-
ing uniform loss and coherent interval-valued proba-
bility assessments. In Section 4 we give some theo-
retical results on interval-valued assessments; we also
construct some classes of AUL interval-valued prob-
ability assessments. In Section 5 we give a result on
totally coherent imprecise probability assessments, by
examining its relationship with a necessary and suf-



ficient condition of total coherence which holds for
interval-valued assessments. Finally, in Section 6 we
give some conclusions.

2 Preliminaries notions and results

We recall some notions and results on coherence and
generalized coherence of precise and imprecise condi-
tional probability assessments. For each integer n, we
set J, ={1,2,...,n}. We denote by A° the negation
of A and by AV B (resp., AB) the disjunction (resp.,
the conjunction) of A and B. We use the same symbol
to denote an event and its indicator.

2.1 Precise probability assessments

Given a real function P defined on an arbitrary family
of conditional events K, let F,, = {E;|H;, i € J,} be
a finite subfamily of I and P, the vector (p;, i €
Jn), where p; = P(E;|H;). Then, let us consider the
disjunctive normal form obtained by expanding the
expression

(EyHyV ESH{V HS) A -+ A (EnH, vV ESH, vV HS).

In such disjunctive normal form we eliminate all the
conjunctive terms which, due to the logical relation-
ships among the events Fi,...,FE,, Hy,...,H,, co-
incide with the impossible event. The remaining
conjunctive terms are the constituents generated by
Fn. We denote by C4,...,C,, the constituents con-
tained in ‘H,, = H; V --- V H,; moreover, we set
Co = H{--- HE (of course, it may be Cy = (}). Notice
that m < 3™ — 1. Then, with the pair (F,, P,) we
associate the random gain G,, = ZieJn siH;(E; —p;),
where s1, ..., s, are arbitrary real numbers and F;, H;
denote the indicators of the corresponding events.
We denote by g, the value of G,, corresponding to
Cr and by G,|H, the restriction of G,, to H,. Of
course, Gp|Hy € {g1,---,9m}. Then, using the bet-
ting scheme of de Finetti, we recall the following

Definition 1. The function P is said coherent if and
only if

maxGn|H, >0, Vn>1, VF, CK, Vsq,..

Given any vector (A, 7 € Jm), we denote by 35 Ar
(resp., > g g, Ar) the sum of the A,’s such that
C. C Hj (resp., C, € E;Hj). Then, given a prob-
ability assessment P, = (pj,j € J,) on F,, let S
be the following system, with vector of (nonnegative)
unknowns A = (A, r € J,),

{ EEJ'HJ- )\T:p]ZHJ )\7‘7 jeJna

A=1, A >0, 1reEd,. (1)

r€dm

., 8n €R.

We set

(I)j(A):ZHj Ary J € Jn; (2)
Iy ={j € J, : mazprcs®;(A) = 0}.

Then, denoting by Py the sub-assessment associated
with Iy, we have ([7])

Theorem 1. The probability assessment P, on F,
is coherent if and only if the following conditions are
satisfied:

1. the system (1) is solvable;

2. if Iy # @, then Py is coherent.

We recall below some results obtained in ([2]). We set
Ty = Ju \ lo; then, we have

Theorem 2. Given a probability assessment P, =
(pi, i € Jp) on F, = {E;|H;,i € J,}, assume that
system (1) is solvable. Then, there exists a solution
A of system (1) such that ®;(A) >0, Vj € I'y.

Theorem 3. Given a probability assessment P, =
(pi, i € Jp) on F,, = {E;|H;,i € J,}, assume that the
system (1) is solvable. Then, for every I' C Ty, the
sub-vector Pr = (p;, ¢ € T') is a coherent probability
assessment on the sub-family Fr.

We denote by II,, the set of coherent probability as-
sessments on F,,. Of course, II, is a suitable sub-
set of the unitary hypercube of R™ and, in geo-
metrical terms, a conditional probability assessment
P = (pi, i € J,) on F,, is coherent if and only if P is
a "point” of the set II,,. Given two points

P =(p,ied,)ell,, P'=@p! icl,)ell,,

we set

pi* = min {p},p/}, p} = max {p},p}’},
P =P AP = (P, i € Jy), (3)
PM =P VP =M ie ).

Moreover, given any pair of points

X:(xi;ie*]n)y y:(yi,i€J7z),

we set x <y if and only if z; < y;, Vi € J,.

Then, P™ < PM for every P', P".

Based on the ordinary topology of the space R™, we
have

Theorem 4. Let P’ = (p}, i € J,), P" =/, i €
Jn) be two coherent probability assessments defined
on F, = {E;|H;,i € J,}. There exists a continuous
curve C with extreme points P’,P” such that:

(i) Pr<P<PM vpecC; (i) CCII,.



Theorem 4 assures that, for every pair of coherent
assessments P’, P” on F,,, we can construct (at least)
a continuous curve C C II,, (from P’ to P”) whose
points are intermediate coherent assessments between
P’ and P”. We remark that in general the number of
such curves is infinite. By Theorem 4, we obtain

Corollary 1. Given any quantities

P1,--- in717li S Uiy Pitly -+ 5 Pny
let us define
Pl = (p17"'api—17li7pi+17"'7p71)a
P” = (plv'"api—lvuivpi-‘rla"'vpn)'
Moreover, let Z = P'P” be the segment
{(p1s---sPis---y0n) : i < pi < u;}, with set of ver-

tices V = {P’',P"}. Then: Z C1I,, < V CII,.

2.2 Imprecise probability assessments

Given any interval-valued probability assessment
Xn = ([li,ui], @ € Jp) on a family F,, = {E;|H;, i €
Jn}, we use the following definition of generalized co-
herence (g-coherence) ([1]).

Definition 2. An interval-valued probability assess-
ment X, = ([l;,u;],i € Jp), defined on a family
of n conditional events F,, = {E;|H;,i € J,}, is
g-coherent if there exists a coherent precise proba-
bility assessment P, = (p;,i € J,) on F,, with
p; = P(E;|H;), which is consistent with X,,, that is
such that [; < p; < wu; for each i € J,,.

Generalizing the system (1) to the case of interval-
valued assessments, we obtain the following system

2, A = g Ay € n,

ZEjHj Ar < ujZHj Ars J € Jn, (4)
veg, A =1, A 20, 1€ Jp.

We can suitably adapt to interval-valued assessments

the definition of the set Iy and of the functions

®;(A),j € J,. We remark that, for each solution

A of system (4) it is

YoM=Y A= Y A =1,

jETn jE€Jn H; r€Jm

hence ®;(A) > 0 for at least a subscript j; therefore Iy
is a strict subset of J,,. Then, denoting by X the sub-
assessment associated with Iy, in the next result we
generalize Theorem 1 to interval-valued assessments.

Theorem 5. The assessment X,, on F,, is g-coherent
if and only if the following conditions are verified:

1. The system (4) is solvable;

2. if Iy # 0, then X is g-coherent.

3 Some remarks on avoiding uniform
loss and coherent interval-valued
probability assessments

We recall that a lower probability P on a family of
conditional events K avoids uniform loss (AUL) if and
only if, for every F,, = {E;|H;, i € J,} C K and for
every o1 > 0,...,0, > 0, denoting by L, = (I;,i €
Jp) the restriction of P to F,, the random gain

G, =Y oiHi(E 1),

i€Jy

associated with the pair (F,, L,) satisfies the condi-
tion: mazx G,,|H, > 0.

Let A = (ap;) be a m X n—matrix. Moreover, de-
note by x and y, respectively, a row m—vector and
a column n—vector. The vector x = (x1,...,Zm) is
said semi-positive if it is nonnegative and moreover
214+ 2m > 0. Then, we have ([6], Th. 2.10)

Theorem 6. Exactly one of the following alterna-
tives holds.

Either the inequality xA > 0 has a semipositive so-
lution, or the inequality Ay < 0 has a monnegative
solution.

By applying Theorem 6, with

xh:)\h207 he‘]’ma Zhe]m)‘hzla
=0 >0, ke J,,

and with A = (ap;), where

1-1;, CnCEH;,
Ap; = _lia Ch g Eina
Oa Ch g H1,C7

we have

Theorem 7. The condition mazx G,,|H,, > 0 is satis-
fied if and only if the following system is solvable

)\TzljZHj)\'rw jeJn;
A=1; N>0, reJ,.

We observe that the assessment P(E|H) < u is equiv-
alent to P(E°|H) > 1 — u; hence, an interval-valued
assessment ([I;,u;], i € J,) on {E;|H;, i € J,,} can be
represented as a lower probability (1;,1 —u;, ¢ € Jy,)
on {E;|H;,E¢|H;, i € J,}. Therefore, Theorem 7
can be extended to the general case of interval-valued
assessments. In this sense, the notions of g-coherent
interval-valued assessments and AUL lower probabil-
ity are equivalent and in what follows we will use in-
terchangeably such terms.

We recall below two results which concern the prob-
lem of the g-coherent extension of interval-valued as-
sessments ([1]).



Theorem 8. Let be given a g-coherent interval-
valued assessment X,, = ([l;,u;], ¢ € J,) on F,, =
{FE;|H;,i € J,} and a further conditional event
E,t1|H,vr1. Then, there exists a suitable inter-
val [po,p°] such that the interval-valued assessment
Xn+1 = ([117@51}71 € Jn+1)a with ln+1 = Un+1 = Pnit1,
on Fni1 = {Ei|H;, @ € Jpt1}, is g-coherent if and
only if ppi1 € [po, p°].

Theorem 9. Given a g-coherent interval-valued as-
sessment X, = ([l;,u;], ¢ € J,) on F, = {E;|H;, i €
Jn}, the extension [l,41,unt1] of X, to a condi-
tional event E, 1|H,41 is g-coherent if and only if

[ln+15 tn1] N [po, p°] # 0.

To determine the values po, p°
has been given in [1].

By the same algorithm, starting with a g-coherent
assessment X, on F,, we can make its ”least-
committal” correction. In this way, we obtain the co-
herent (lower and upper) probability X on F,, which
would be produced by applying the natural exten-
sion principle given in [12]. To obtain X* we can
apply n times this algorithm, by replacing each time
Ent1|Hp+1 by Ej|Hj, j € J,, using as probabilistic
constraints the g-coherent assessment X, .

We recall that a procedure to check coherence of
an interval-valued conditional probability assessment
and an algorithm for finding the best bounds for co-
herent extensions have been given in [11]. Moreover,
an algorithm for computing the least-committal co-
herent correction of an imprecise assessment, also use-
ful for inferential purposes, has been given in [10]. The
problems of checking coherence and of the extension of
lower-upper conditional probabilities have been stud-
ied also in [5]. Direct methods, which do not involve
sequences of linear programming problems, have been
proposed in [13].

As the above remarks suggest, each theoretical result
obtained for g-coherent assessments can be suitably
adapted to coherent ones.

In this paper we explicitly consider only the case of
AUL (i.e. g-coherent) interval-valued assessments.

, a suitable algorithm

4 Some results on interval-valued
assessments

In this section, among other results, we generalize
Theorems 2, 3, and 4 to the case of interval-valued
assessments. In the next result we prove that, if the
system (4) associated with a pair (F,,, X,,) is solvable,
then there exists solutions A’s of such system which
give positive values to the functions ®;(A) = > H, Ar
for every j € Ty = J, \ Iy. This property will be
exploited when proving Theorem 12. We have

Theorem 10. Given an interval-valued probabil-
ity assessment X, = ([l;,w;], ¢ € J,) on F, =
{E;|H;,i € J,}, assume that system (4) is solvable.
Then, there exists a solution A = (., 7 € Jy,) of
system (4) such that ®;(A) >0, Vj € I'y.

Proof. For each ¢ € Ty it is max ®; > 0; hence there
exists a subset of the set of solutions S of system (4),

which we denote by {A; = ()\7(3), r € Jn), i € Io},
such that ®;(A;) > 0, ¢ € T'g. Then, given any vector
A= ()\T, r e Jm) = ZiEFo SUiAZ‘, with Ziefo xTr; =
1, z; >0, ViEFO,itiSZTGJm)\Tzl, Ar>0,Vre
Jm. Moreover, for each i € I'y one has

ZJZ)‘gl) < Z )‘SL) < ujz)‘g)v J€Jn;
H; E;H; H;

H, EjH; H,

hence, for j € J,, it is

ZEjHj (Ziel"o xi/\g))

Y

L, (Sier, 2A) |

ZEjHj (Zier(, xi)\g)) S U ZHJ- (Zz‘el‘o xi)\g)) )
that is
LY A< Y n <3 A e,
H; E;H; H,

so that A = (A, r € Jy,) is a solution of system (4).
Moreover,

(I)j(A) = (I)j (Ziel“o xiAi) = (5)
=Y ier, Ti®i(Ai) > 2;®5(A;) >0, Vj€Ty.

O

In the next result we prove that the solvability of sys-
tem (4) implies, for each T' C T'y, the g-coherence of
the sub-assessment X on Fr. We have

Theorem 11. Given an interval-valued probabil-
ity assessment X,, = ([l;,u], ¢ € J,) on F, =
{E;|H;,i € J,}, assume that the system (4) is solv-
able. Then, for every I' C I'y, the sub-vector Xt =
([ls,u;], ¢ € T) is a g-coherent interval-valued assess-
ment on the sub-family Fr.

Proof. Of course, g-coherence of X, implies g-
coherence of Xr too; so we only need to prove g-
coherence of Xr,. We distinguish two cases:

(i) the sub-assessment X, associated with Iy is g-
coherent;

(ii) the sub-assessment Xy associated with Iy is not
g-coherent.



In the first case, by Theorem 5, X,, is g-coherent and
hence Xt is g-coherent too.

In the second case, given any g-coherent sub-
assessment X = ([I¥,uf], i € Ip) on Foy, by Theorem
5 the assessment

X (XFO»XQ) ([lzauz} ZGFO; [Z’L’ ] ’L€Io)

on F, is g-coherent and hence Xr, is g-coherent too.
O

Given an assessment X,, on F,, and assuming system
(4) solvable, let S’ be a subset of the set S of solutions
of (4). Recalling that ®;(A) = > 5 Ar, where A =
Ar, 7 € Jp), we set

Is :{je(]n:q)j(A):O’VAGS/}’

We denote by Xr_, (resp., X7, ) the sub-assessment
of X,, associated with I's: (resp., Ig/). Obviously,
S’ C S implies I'ss C T'g; hence, by Theorem 11, the
sub-assessment Pr, is g-coherent. Notice that, by re-
placing X7, with any sub-assessment X7_, the set .S’
is also a subset of the set of solutions of the system (4)
associated with the assessment X = (XFs"X}kS/)'
Of course, the same remark holds in the particular
case S’ = {A}. Then, we have

Lemma 1. Given an interval-valued assessment X,
on F,, assume that system (4) is solvable. Then,
given any subset S’ C S and any g-coherent assess-
ment X}*s, on the sub-family Frgs the assessment
X5 = (Xrg,, X7,,) on F, is g-coherent.

Proof. We observe that X is obtained by X,, by re-
placing Xy, with X}‘S, and that S’ is also a subset
of the set of solutions of the system (4) associated
with X. Then, by applying Theorem 5 to the pair
(Fn, X), system (4) is solvable and Iy C Is:. More-
over Xy, being a sub-assessment of X7, is g-coherent
and hence X is g-coherent too. 0

By Lemma 1 it immediately follows that, if (4) is solv-
able and Xj_, is g-coherent, then X, is g-coherent.
Given a vector A = (6;,1 € J,) € [0,1]™ and two
interval-valued assessments

= ([li,uj], i € Jyn),

(2 ’L

Xy = ([l vl i € Jn),
by the symbol XA we denote the interval-valued as-
sessment ([l;,u;], i € J,,) defined by

li = (1*51')124’51’1;‘/7 U; = (1751)11,;4’5111,;,, 1€ Jn
We set Ay = (0,0,...,0), Ay = (1,1,...,1); hence
X = Xna,, X)) = Xa,. We denote by S, the set of
g-coherent interval-valued assessments on F,,. Then,

I's = Jn\IS/ .

the result below generalizes Theorem 4 to interval-
valued assessments, by showing how to construct an
infinite class of interval-valued absebsments which are
intermediate between X/, X/, convex combina-~
tions of them.

Theorem 12. Let be given two g-coherent interval-
valued assessments X/ = ([ll,ul],i € J,), X =
(17, u], 4 € Jy), on the family F,, = {E;|H;,i €
Jn}. Then, we can construct an infinite class X of
interval-valued probability assessments on F,, such
that: (i) each X, € X is a convex combination be-
tween X! X/: ie., X,, = Xa for some A = (4;,1 €
Jn) €[0,1]™; (i) X C Q.

Proof. Using (2) adapted to imprecise assessments,
we denote by I, and I/ the subsets, associated respec-
tively with X/ and X/. From g-coherence of X/, X/,
recalling Theorem 10, there exist two vectors

Ay=(\,redy), A=\ reln,
such that: ®;(Ay) > 0, Vj € Ty = J, \ I, and
®;(Af) >0, Vjely=J,\I. Given any number
ap € (0,1), let us consider the vector
Ao = (Ary7 € Jp) = (1 — ap)Ay + apAy . (6)
Of course, A, = (1 — ap) AL + ap, Vr € Jp,.
Defining 1) = I, NI}/, for each j € T(®) =T
o\ I we have
D;(Ao) = P;[(1 — o)Ay + apAg] =
= (1= a0)®;(Ap) + ao®;(Ag) >0,
with ®;(Ag) = 0,Vj € 19 = J, \ T(®. Moreover,

from g-coherence of X/, X/, for each i € J,, we have

i ZHi A< ZEH A < g ZHi Al

D DIMPUED DD ST Sy U
Now, let us consider the interval-valued assessment

Xro = ([li, ], i € r<0>) where
L= (1 =N+ 6%, u; = (1 —69)u

171 )

ury =

(7)

/ 0,11
it ou

(8)
50— a0 Y A oo X, N

' (1—ao) ZH A+ oo ZH AY ZHi)‘

From (7) and (9) for each i € I'©) we have
Yo A = g, (1= a0\, +ag)\] =

=1 =) X g AN+ gy A >

(1= ao)l; >op, A+ aoli 2o, A =

(9)

\%

_ [UmenZu Xy | coZp

Sa A T T,

i

ll/ ZH )\ —

= [(1= )k + G113y, A =1 o, A



By a similar reasoning ZE A <
hence, recalling (8),

LY A < D> A < wy A, Viel®,
H; E;H; H;

Now, given any quantities

Wi ) g Ars

60 el0,1], ie I =7, \TO, (10)

let us consider the assessment X,, = ([l;, u;], ¢ € Jp),
where, for each i € J,, it is
L = (1 =N+ 6% ug = (1 — 0N, + 6%ul!

and where §¢ is defined by (9) for i € T(® and by (10)
for i € I19). We have

BY A < > A S w Y A, Vied,; (11)
H;

hence, Ag is a solution of system (4) and, consider-
ing the set Iy associated with X,,, as defined by (2)
(adapted to imprecise assessments), we have [y C
I 7O C Ty; then, by Theorem 11, the assess-
ment Xp, on Fr, is g-coherent (and hence Xy is
g-coherent too). Notice that 6 > 0, 1 —4§% > 0,
Vi€ Ty, with 69 >0, 1 -6 >0, Vi € T(; hence
min {l}, '} <1; <max{l},l!}, VieTy,

19 Y2 1771
min {u}, v} <wu; < max{uj,u;}, VieTly,

with the inequalities strict for i € I'(?),

We denote, respectively, by X{, X{,Fo the sub-
assessments of X/ X! and the sub-family of F,, as-
sociated with Iy. Of course, from g-coherence of X,
and X/, it follows that X, and X{/, defined on Fo,
are g-coherent too.

Moreover, we denote, respectively, by I; and I the
subsets associated with X, and X{/, as defined by (2)
(adapted to imprecise assessments).

Then, exploiting again Theorem 10, we iterate the
above procedure by considering a pair of vectors
(A}, AY) associated with X{, X//. Given any number
ag € (0,1), we define a vector Ay = (1—aq)A]+ar AY;
then, we introduce , as in (9), suitable non negative
coefficients 4}, € Ty, with ! > 0,Vi € T, In
this way, by Theorem 11, we construct a g-coherent
assessment X, defined on Fr,, where

0 OTW =1, ur) =L\ IV =1, \ (I, n1).

The g-coherence of the assessment (Xr,,Xr,) on
FroUFr, = Fj,\1, is obtained by the following steps:
(a) let X; be any g-coherent assessment on the sub-
family F7, associated with the subset I1;

(b) then, by Theorem 5, the assessment (Xr,, X;) on
Fo = Fr, UF; is g-coherent;

(¢) then, by Theorem 5, the assessment X, =
(Xr,, X1y, X1) on F,, = Fp, UFr, UF] is g-coherent;
(d) then, the sub-assessment (Xr,, Xr, ) on Fr, UFr,
is g-coherent.

By repeating the procedure for the triple (X7, X1, F1)
associated with I, we determine a g-coherent proba-
bility assessment Xr, defined on Fr,; and so on.

In this way, after k + 1 steps, with £k < n — 1, we
construct an interval-valued assessment

XA =(Xry, X,y ., X))

on F,, which, by Theorems 5 and 11, is g-coherent.
In particular, we could construct g-coherent
assessments on F, of the kind Xa =
(Xt©, Xr@,..., Xrm), by applying Lemma 1
with S” = {A;}, j =0,1,...,h, where for each j the
vector A; = (1 — a;)A} + a;A7 is obtained as in (6).
We remark that each assessment Xa is ob-
tained by wusing the continuous parameters
aj, 6,1 € Tj,j = 0,1,...,k. Moreover, Xa is
intermediate between X/ X! that is, Xa is a
convex combination of X, X" with coefficients the
parameters 87, i € I';, j =0,1,..., k.

We recall that the coefficients 67,7 € TW, j =
0,1,...,k, are defined by using the continuous param-
eters ay, aq, . .., ap and the vectors Ag, Ay, ..., Ay, as
made in (9) for the coefficients 6, i € T'g. Moreover,
the parameters aq,a,...,q, can assume any value
in (0,1) and, for each 5 =0,1,...,k, we have

lim 6 =0, lim 6/ =1, VielW.
a;—0 aj—1

Finally, letting a; — 0, 6? — 0, and o;j — 1, (53 —
1,ieTy\ '), j =0,1,...,k, we obtain an infinite
class X of AUL interval-valued assessments on F,,, i.e.
X C $,. Then, (under the ordinary topology of the
space R™) we can write

lim XA =X/
ASAg A n

lim XA =X/".

N "

As is shown by the previous reasoning, we can move
in a continuous way from X/, to X!/. By analogy with
Theorem 4, we can say that X, X!/ are connected by
the interval-valued assessments contained in X.

We also remark that, in general, we can find an in-
finite number (of sequences) of pair of solutions, like
(AG, AD), ... (A}, AY); hence, we can construct an in-
finite number of classes like X. O

We illustrate the previous result by the following

Example 1. A Problem of Currency Exchange (a
similar problem is in [9]). Let (Ag); denote the price
of a unit of currency B in terms of a unit of currency
A for the final trade that occurs in a currency market
on day t. Consider the three currencies of the dollar,



$, the pound sterling, £, and the yen, Y. Consider the
events E1 = ($£)i+1 > (8£)s, B2 = ($y)ev1 = Sy )es
E; = (£y)ir1 > (£y)t, that is the events that the
final trading price B in terms of A on day ¢t + 1
is at least as great as on day t. Given the family
Fs ={E\V E3, By, E\|(E1 V Es), Ey|Ey, E3|Es}, sup-
pose that two experts (say & and &) assert (on Fs)
the following probability evaluations:

X! = (0.8,0.4,[0.75,0.95], [0.45, 0.55], [0.4, 0.6]) ;
X! = (0.9,0.85,[0.65,0.98], [0.60, 0.70], [0.5,0.65]) .

Such assessments are g-coherent, with Iy = I = 0.
Given any solution Aj of system (4) associated with
X/, one has

01(Ap) = Da(Ap) = Y N, = 1,

(D) = X, X = 08,

D4(A)) = Ba(Ap) = X, X, = 0.4

Analogously, given any solution A{j of system (4) as-
sociated with X!/, one has

1(Af) = P2(Ag) =1, @3(AF) =0.9,

Dy(Af) = P5(Af) =0.85.

Given any oy € (0,1), let us consider the interval-
valued assessment XA = ([l;,u;], i € J5) on Fs, de-
fined by

Iy =u; =0.8(1—69)+0.969,

lo = uy = 0.4(1—69) +0.8589,

I3 = 0.75(1—09)+0.6509 , uz = 0.95 (1—69)+0.98 69,
ly = 0.45 (1—69)+0.6009 , ugy = 0.55 (1—69)+0.70 69,
Is =04(1—-62)+ 0582, us = 0.6 (1 —862) + 0.6562,

0 _ 0 _ 0 _ 0.9 oo 0 _
where 6] = 03 = ap, 05 = T8 (a0 10905 0y =
0 _ ___085ag :
05 = 0 AT —a0) 108500 It can be verified that Xa

is g-coherent. Moreover, in this example, A only de-
pends on ap. Then, if we have the same confidence
with both experts £ and &;, we can choose ag = %,
by obtaining the following assessment on F5

Xa = (0.85,0.62,[0.69,0.96], [0.55, 0.65], [0.46, 0.63]) .

By Theorem 12 we obtain

Corollary 2. Let be given two g-coherent interval-
valued assessments

X;L-'rl = ([ll7u1]7 ceey [lnvun]a [plvp/]) )

/.

n,+1 = ([llvul]v B [lna unL [pllvp”D )
on Fni1 = {E;|H;, i € Jpy1}, with p’ < p”. Then,
for each p € [p/,p"'], the interval-valued assessment

Xny1 :([ll,u1}7...,[ln,un]7[p,p]), (12)
on Fp41 is g-coherent.
Proof. By Theorem 12, an infinite class connecting

X/ .1, X)) 1 and containing all the assessments like
(12) is given by

X = {XA, A= (0,...,0,6n+1), §n+1 S [0, 1]}

It can be easily verified that, for d,,1 = If/%pl,, one
has Xa = ([l1,u1], .-+, [ln,un], [P, 0])- O

Remark 1. We recall that the notion of g-coherence
and (the proof of) Theorem 5 are strictly related with
the coherence principle of de Finetti. Moreover, The-
orems 8 and 9 have been obtained in [1] with the aim
of generalizing the fundamental theorem of de Finetti,
even if they can be seen as sub-derivatives of the nat-
ural extension principle of Walley.

Then, along these lines, there are a natural interest
and a deep motivation (at least in our de Finetti-based
approach) in unifying Theorems 8 and 9, as made in
the next result. As it will be seen, such result has a
very simple proof and is directly based on Theorem
5 and on (Corollary 2 of) Theorem 12, which is our
main result.

Theorem 13. Given a g-coherent interval-valued as-
sessment X,, = ([l;,w;], ¢ € J,) on F,, = {E;|H;, i €
Jn} and a further conditional event E,,1|H, 41, there
exists a suitable non empty interval [po,p°] C [0,1]
such that the assessment X1 = ([l;, ui], ¢ € Jny1)
on Fpi1 = {E;|H;, t € Jp41} is g-coherent if and only
if [ln+1a un+1] N [p07p0] 7£ @

Proof. We denote by II the set of values p such that

Xn+1 = ([lhul], ey [lmun], [p,p] s

is a g-coherent extension of X, to F,, 1. We first ver-
ify that I is non empty. Let D = {Dy,..., D} be the
set of constituents generated by F,, U {FEn41|Hpy1}
and contained in H,4+1 = Hy V-V H,41. Consider-
ing the constituents C1, ..., ), generated by F, and
contained in ‘H,, = H{ V ---V H,, we observe that
there exist disjoint subsets I'1, s, ..., ', of D, such
that
G = \/ Dy, re€dn.
D:CC»

The system (4), with unknowns Aq,...,\,, associ-
ated with C1,...,C},, can be written as a system
with vector of unknowns A = (d1,...,d,) associated
with D1,..., D, by replacing each A, by > p, o 0t
Then, we introduce the following extended system S’,
with a parameter p € [0, 1],

ZEn+lHn+1 6t :szn+l 6t7
l]ZH] 615 S ZEjHj (St Susz] 6t7 j € Jn7
Yoes.0t=1, 6 >0,t€e s,

By suitably adapting p, with each solution of (4)
we can associate (at least) a solution of S’. Given
any p, we denote by S’ the set of solutions of &';
moreover, we set ¥* = {A € 5" : 3, 4 > 0}
We distinguish two cases: (i) there exists a value
p € [0,1] such that T # 0; (ii)) ¥+ = 0 for every



p € [0,1]. In the first case, given any A € 3T, the
assessment X411 = ([l1, w1l .., [ln, un], [p, p], where

E H t . .
p= %, is a g-coherent extension of X,, to
Hypp1 0

E,+1|Hni1; hence I # (0. In the second case, (using
any value p) we determine the set I) = [yU{n+1} =
{j € Jnt1 : Mazacs ZHj 0 > 0}, where Iy C J,,.
If Iy = (), then by Theorem 5 the assessment X,
on F,t1 is g-coherent for every coherent assessment
pon Eniq|Hpt1; hence I # 0. If Iy # 0, we re-
place (Fn,X,) by (Fo, Xo) by repeating the above
reasoning. After a finite number of steps, we find a
set ¥ # 0; hence we conclude that II # (). Defin-
ing po = inf II, p° = sup II, by the closure prop-
erty of the set of coherent probability assessments,
we have po € II, p° € II. Finally, by Corollary 2, we
obtain IT = [pg, p°]. Then, it immediately follows that
[ln41, Un+1] is a g-coherent extension of X, if and only

if [ln+17un+1] n [PO»PO] 7é (Z) O

We will now construct some other classes of g-coherent
interval-valued probability assessments on a family
Fn = {F;|H;,i € J,}. Such construction could be
useful, e.g., to conciliate possible discrepancies among
different expert opinions, as shown in the following ex-
ample. Let F3 be the family {E1|Hy, Es|Hz, E3|Hs}
and X', X" be two interval-valued assessments on F3
(made by two experts)

([ah bl]’ [aQ’bQ]’ [a3’b3]) ) ([041751], [O‘2762]7 [a3aﬁ3]) )

such that b; < a7 and (2 < as; this implies
la1,b1] N [aq, B1] = [az, bo] N [az, B2] = 0.

Then, let wus consider any assessment X3 =
([11,u1], [12, w2, [I3,u3]) on Fz and the following con-
ditions

(*) [llaul] g [b17a1]7 [aiabi]u[aiaﬁi] g [livuiL 1= 2a3a

(**) [l27u2] g [6270'2]’ [ai7bi]u[ai7ﬁi] g [liaui], 1= 153

In the next theorem we prove that, if X', X" are g-

coherent, then any X3 satisfying (*), or (**), is g-

coherent too.

Given two coherent probability assessments on F,,,
Pl=(ppi€dn), P"=(pi i€ ),

and recalling (3), let be

[vapM} = [pinvpiw} X X [p;,nv TI\L/I] =
—{P:Pm <P <PM}.

Given any interval-valued assessment on F,, X, =
(liywi], @ € Jp), we denote the associated multi-
interval by

T =[l1,u1] X -+ X [ln, tn] .

Of course, if ZN{P’, P"} # (), then X, is g-coherent.
We have

Theorem 14. Given two g-coherent interval-valued
probability assessments

Xr/L = ([lgvu;]a (S Jn)a X’I/’L/ = ([l;’,u'/], (S Jn)?

3

on the family F,, = {E;|H;,i € J,}, assume that, for
a suitable non empty subset I' C .J,,, it holds

[l;-,u;-] N [l;-’7u;-’] =0, Vjerl.
Moreover, let be X = U]EF X, where, for each j € T,
&X; is the class of interval-valued probability assess-
ments X, = ([l;,u;], ¢ € J,) on F,, such that

[ljvuj] c [u;n»l;'w] ) [l;,uli]U [lg/’u;/] - [liaui]v Vi 7£ Js

where u* = min {u},u}, 1} = max {l,1]}. Then,

for every X,, € X, X,, is g-coherent.

Proof. As X, X/ are g-coherent, there exist two co-
herent assessments P’,P” on F,, such that
U<p;<w, I <p]<u, i€Jn;
hence, considering the multi-interval [Pm,PM], by
Theorem 4 there exists a continuous curve C, con-
tained in the multi-interval [P™, PM], which connects
P, P". Let X,, = ([li,u;], 7 € J,) be any interval-
valued assessment in X; and let 7 be the associated
multi-interval. For any p; € [p}", pf/[ ], we set

L, ={(p,... ,Pn) P € PPN, Vi # )

hence

7pj7"'

I

Pj

PP =

p; €[p7 3]

CNI, #0, Yp; € [p),p}';

(notice that C N I, is the intersection point of C and
I,,). Moreover,

pr <, pM>IM, Vie J,;

7 0

hence, by the hypotheses, one has
15,u;) € 707" Pl C lliyul, Vi .

Then, for every p; € [l;,u;], it is I, € Z, so that

cnz= |J (@©n1,) #0,
p;€llj,u;]
and hence X,, = ([l;, u;], ¢ € Jp,) is g-coherent. O

Notice that each point P = CNI,;, p; € [l;,u;], of the
arc of curve CNZ is a coherent probability assessment
on F, consistent with X,,.

We illustrate the previous result by the following



Example 2. Recalling Example 1, let us consider
the subfamily .7:3 = {El‘(El vV EQ),E1|E2,E3|E2} of
Fs5. Then, let us consider the following g-coherent

assessments on F3

Xz = ([%7 %L [%v %]7 [%v %]) )

Xil’a/ = ([%7 %]7 [1% lo [ 507 16050])

We observe that [+, 3] N[5, 5] = 0
then, by Theorem 14, the assessment X3 =
(35, 2,35, 5], [15, 16—050]) is g-coherent. To verify
g-coherence of X3, we observe that two precise
assessments consistent, respectively, with X} and X4
ari P —24(12,5150,(10) an(ilu’P” = (2‘%_(1), 12050’ 22.). Hence
P = (550160 16) P (4’100’100)
By Theorem 4, there exists a continuous curve
C C1I,, such that P™ <P < PM v¥P c(C. The idea
of Theorem 14, is that as C is continuous, there exist
coherent points (p1, p2, p3)’s such that p; € [m, %]
p2 € [£5, £%] (the ”interval” between [0.45,0.55] and
[0.60,0.70]), and p3 € [+, £%]. Roughly speaking,
while we ”tighten” the interval associated with the
2nd event, we "enlarge” the intervals associated with
the 1st and the 3rd event. For example, the precise
assessment ( 10 15080, 150) on Fj3 is coherent and verifies
the thesis of Theorem 14.

5 Totally coherent interval-valued
assessments

In this section we consider the notion of total coher-
ence; then, we give a result on totally coherent impre-
cise probability assessments and we examine its rela-
tionship with a necessary and sufficient condition for
total coherence of interval-valued assessments. Let
II,, be the set of coherent probability assessments
Pn = (pl, “ee 7pn) on .Fn = {E1|Hz7 S Jn}. An im-
precise probability assessment on JF,,, represented by
a subset S, C [0, 1]", is g-coherent (i.e., avoiding uni-
form loss) if and only if S,, N1I,, # (). We say that the
imprecise assessment is totally coherent if and only if
S, C II,. In these cases, we also say that the set .S,
is g-coherent (resp., totally coherent).
Before giving the next result, we illustrate it in
a particular case. Let be given a family F3 =
{E1|Hy, E3|Hy, E5|H3}, a subset ® of the unit square
[0,1]%, and two functions g, f defined on ®, with
0 < g(z,y) < flz,y) < 1,¥(z,y) € ®. Given any
€ [0,1], let 4 be the function ag + (1 — o) f. We
denote, respectively, by 3,4, 2,3, the surfaces as-
sociated with the functions g, f, 74, and by S the set
Uaef0,1] Zva- Then, in the next theorem we prove
that totally coherence of the set X, U 3¢ implies to-
tally coherence of the set ¥, and is equivalent to
totally coherence of the set S.

Given a subset T'y,_1 = {i1,...,in_1} C Jn, we de-

note by II, 1 the set of coherent assessments on
Frn-1={E;|H;, i € T),_1}. Then, we have

Theorem 15. Let be given two functions f(x), g(r),
where m = (p;, i € I';,_1), defined on a set ® C II,,_1,
with 0 < g(7) < f(m) <1, Vm € &. Moreover, let be

K ={y:g(m) <~(m) < f(7), Vm € };
5y =A{(my(m) i me @}, v €K

Yhe ={(m7a(m)) : 7w € @}, a €[0,1],
Yo =ag+(l-a)f, acl01],

U X, ={(mpn) :me® g(n) <pp, < f(m)}.
a€l0,1]

Then, one has:
(i) 2,uX; CII, = X, CII,, VyeK;
(i) SCII, <= X,UX; CII,.

Proof. (i) assume that ¥, U X, C II,; then, let us
consider any v € K. Given any P = (7, v(n)) € X,
let Sy be the segment with vertices

Py = (m,g(7)) € Eg, Pp=(m f(r)) €.

We have P € S, and, by Corollary 1, S, C Il,; then
Pell,, VP e X,; hence ¥, C IL,.

(ii) of course S CII,, = E,UX; CII,.
Conversely, assume that X, U X, C 1I,,. We observe
that, for each a € [0,1], it is 7o € K; then ¥, C
IT,, Va € [0,1]; hence S = Uae[o,l] X, CIL,. O

We remark that in general the checking for total co-
herence of (arbitrary) sets like S, or X4, or X, may
be intractable. Let be given an interval-valued as-
sessment X,, = ([l1,u1],...,[ln, un]) on F, and the
associated multi-interval and set of vertices

I:[ll,’ulb(" V:{ll,ul}x~-

X[lyy up] X, un}

We recall below a necessary and sufficient condition of
total coherence for X,, ([8]), which amounts to check-
ing coherence of all vertices of Z.

Theorem 16. Given an interval-valued assessment
Xn = ([l1,u1], .., [ln, un]) on F,, one has:
ICIl, «— VCII,. (13)

As an application of Theorem 15, we sketch below an
alternative proof of Theorem 16. We set V =V, U Vy,
where

Vg - {llaul} X X {lnflaunfl} X {ln}a

Vf = {ll,ul} X+ X {ln,hun,l} X {un}



Of course, Z C II,, implies V C II,,. Conversely, as-
sume that ¥V C II,, and (by induction) that (13) holds
for the multi-interval [Iy,u1] X+ X[ly—1, up—1]. Then,
applying Theorem 15 with g(7) = {,,, f(7) = u,, and
b =[l1,u1] X+ X [ln—1,Upn—1], we have

Y, ={(m ) me®}, Xp={(mu,):med},

Yo(m) =aly+(1—a)u,, S= U X, =1I.
a€l0,1]

As YV, C 11, (resp., Vy C II,,), by the inductive hy-
pothesis one has ¥, C II,, (resp., £; C II,,), so that
YgUXys C Il hence 7 C 1I,,.

6 Conclusions

We have examined interval-valued probability assess-
ments on finite families of conditional events. Our
approach has been based on the notion of g-coherence
which coincides with Walley’s AUL property. We
have generalized some recent results on precise
probability assessments to the case of interval-valued
assessments. In particular, we have generalized a
connection property of the set II,, of precise coherent
conditional probability assessments to the case of
interval-valued assessments. More precisely, we have
proven that, with any pair of AUL interval-valued
assessments X, , X,/ we can associate an infinite class
X of AUL interval-valued imprecise assessments con-
necting X! and X!/. Then, exploiting such result, we
have examined the extension of g-coherent imprecise
assessments. We have also examined a method to
construct classes of g-coherent interval-valued assess-
ments, which could be useful to conciliate possible
discrepancies between different opinions of experts.
Finally, we have given a result on totally coherent
set-valued probability assessments, by examining its
relationship with a necessary and sufficient condition
for total coherence of interval-valued assessments.
We remark that the results obtained for AUL
assessments can be suitably adapted to coherent
ones. This study could be deepened in a further work.
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