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Abstract

This paper discusses decision making in the prac-
tically important situation where only partial pri-
or information on the stochastic behavior of the
states of nature expressed by imprecise probabil-
ities (interval probability) is available. For this
situation, in literature several optimality criteria
have been suggested and investigated theoretically.
Practical computation of optimal solutions, howev-
er, is far from being straightforward. The paper
develops powerful algorithms for determining op-
timal actions under arbitrary ambiguity attitudes
and the criterion of E-admissibility. The algorithms
are based on linear programming and can be imple-
mented by standard software.
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1 Introduction

Decision theory provides an elegant formal frame-
work for determining optimal actions under uncer-
tainty on the states of nature. Practical application
of the popular Bernoulli criterion of maximal ex-
pected utility, however, is limited by the fact that
quite often the uncertainty is too complex to be ad-
equately described by a classical, i.e. precise, prob-
ability distribution. For instance, Ellsberg’s exper-
iments (cf. [7]) make it clear without any ifs and
buts that ambiguity, i.e. the extent of deviation

from ideal stochasticity, plays a constitutive role in
decision making that must not be neglected: sim-
ply applying criteria successful in classical decision
theory to situations of complex uncertainty, where
only partial information about the states of nature
is available, would lead to deceptive conclusions.

To take ambiguity into account properly, a sub-
stantial generalization of the concept of probability
has been developed, known as the theory of credal
sets [15], imprecise probabilities [23], interval prob-
ability [25] or interval statistical models [14], also
comprising belief functions (e.g. [19], [27]) and con-
vex (or two-monotone) capacities (e.g. [5]). Based
on this comprehensive framework to model partial
information alternative optimality criteria for deci-
sion making have been developed to generalize the
classical notion of expected utility (cf., in particu-
lar, the recent survey by [20]).

The main issue is that now, in general, the expect-
ed utility is interval-valued. Two types of criteria
may then be suggested: The first one, like the crite-
rion of maximality (as proposed by [23]) or the con-
cept of E-admissibility (advocated by [15], [16]), re-
nounces the completeness of the ordering and gen-
eralizes the concept of admissibility by distinguish-
ing a set of actions as being not inferior. This set
consists of all actions that are optimal with respect
to at least one classical, i.e. real-valued, probability
distribution on the states of nature consistent with
the available partial information.

In contrast, the second branch of criteria aims at
a complete ordering of the actions, and so the
interval-valued expected utility eventually has to
be transformed to the real line. Which represen-



tation of intervals is used depends on the ambigui-
ty attitude. The most conservative choice is strict
ambiguity aversion, where one concentrates on the
lower interval limit only, leading to a popular crite-
rion known under different names (see Section 3).

Just as the minimax criterion used in classical deci-
sion theory, this criterion, however, turns out to be
overpessimistic, and more sophisticated representa-
tions of interval-valued expected utility are highly
desirable that take additionally the decision mak-
er’s attitude towards ambiguity into consideration
(see [25, Chapter 2.6] for a detailed discussion of
this topic). It is often overseen that already Ells-
berg [7, p. 664] himself was aware of this problem
and suggested to consider a Hurwicz-like compro-
mise between lower and upper expected utility (see
also, e.g., [11], [17], [26], [1]).

In more complex situations practical application of
all these criteria is limited by the fact that the
computation of optimal actions is far from being
straightforward. [1] gives a general algorithm to
calculate optimal solutions under strict ambiguity
aversion by linear programming. In large problems,
however, this procedure may become intractable
since the constraints are defined by the vertices of
the underlying polyhedron of classical probabilities,
and so this number may become very large. More-
over, the vertices often have to be calculated in ad-
vance by separate optimization problems.

This paper presents substantial further develop-
ments on computational issues in generalized de-
cision making: Section 2 briefly states the decision
problem more formally and introduces the notation
used throughout the paper. The pessimistic deci-
sion making based on strict ambiguity aversion is
considered in Section 3, where, in particular, a gen-
eral algorithm based on partial dualization of the
original problem is given. It still allows to calculate
optimal decisions by a single linear programming
problem, but now manages to achieve this without
relying on the vertices. Then in Section 4 both al-
gorithms, the one based on the vertices as well the
dual one, are extended to arbitrary ambiguity at-
titudes expressed by a caution parameter – a step
that seems to be easy at a first glance but proves
to demand some care. Both ways to proceed are
compared, generally and in an example. Section 5
turns to the first type of criteria, derives a gener-
al algorithm for calculating all E-admissible actions

and briefly glances at the criterion of maximality.

2 Problem statement

Consider the basic model of decision theory: one
has to choose an optimal action from a non-empty,
finite set A = {a1, ..., an} of possible actions. The
consequences of every action depend on the true,
but unknown state of nature ϑ ∈ Θ = {ϑ1, ..., ϑm}.
The corresponding outcome is evaluated by the util-
ity function,u : (A × Θ) → R, which can be repre-
sented in the following table:

ϑ1 . . . ϑj . . . ϑm

a1 u(a1, ϑ1) . . . u(a1, ϑm)
...

. . .

as

... u(ai, ϑj)
...

...
. . .

an u(an, ϑ1) . . . u(an, ϑm)

and by the associated random variable u(a) on
(Θ,Po(Θ)) taking the values u(a, ϑ).1 Often it
makes sense to study randomized actions,2 which
can be understood as a classical probability mea-
sure λ = (λ1, ..., λn) on (A,Po(A)), where λi is in-
terpreted as the probability with which action ai is
taken. Then u(·) and u(·) are extended to random-
ized actions by defining u(λ, ϑ) :=

∑n
s=1 u(as, ϑ)λs.

This model contains the essentials of every (for-
malized) decision situation under uncertainty and
is applied in a huge variety of disciplines. If the
states of nature are produced by a perfect ran-
dom mechanism (e.g. an ideal lottery), and if
the corresponding probability mass function π(·)
on Θ is completely known, the Bernoulli princi-
ple is nearly unanimously favored. One choos-
es the action λ∗ maximizing the expected utility
Eπu(λ) :=

∑m
j=1 (u(λ, ϑj) · π(ϑj)) among all λ.

As argued in the introduction, in many applica-
tions however it is not possible to describe the prior
knowledge on the stochastic behavior of the states
of nature by a classical probability, and a more gen-
eral description of uncertainty is needed, as provid-
ed by imprecise probabilities and related approach-
es.

1For a simple example see Section 4.3.
2Next to simplifying calculations, under some criteria the

optimal randomized action may be really superior to the
optimal unrandomized ones, cf. e.g. [1].



From the technical point of view, the usual con-
cepts of imprecise probability lead to sets of clas-
sical probabilities. In the sequel, we additionally
assume that these sets are (convex) polyhedra, i.e.
that the available information about the states of
nature can be represented by a set of r lower and
upper expectations (previsions), bi and bi, of func-
tions fi, i = 1, ..., r, defined on Θ. So we have

bi ≤ Eπfi =
m∑

j=1

fi(ϑj)π(ϑj) ≤ bi, i = 1, ..., r, (1)

such that also the trivial constraints π(ϑj) ≥ 0 for
all j and

∑n
j=1 π(ϑj) = 1 are included. Interval

probabilities fit into this frame by considering in-
dicator functions, and also bounds on conditional
classical probabilities can be brought into this form.
Moreover, comparative probabilities, i.e. assign-
ments of the form π(ϑj) ≤ π(ϑl) are included, too.
This set of inequalities restricts all mass functions
π on Θ to a set M such that every π from M satis-
fies all the inequalities. Moreover, every π from M
produces a classical expected utility Eπu(λ). Since
the set M is convex, assuming M 6= ∅, all possible
expected utilities Eπu(λ) range within the interval

[
EMu(λ) , EMu(λ)

]
, (2)

where EMu(λ) = min
π∈M

m∑

j=1

uj(λ) · πj , (3)

and EMu(λ) = max
π∈M

m∑

j=1

uj(λ) · πj . (4)

This interval-valued quantity is called generalized
expected utility3. The difference between upper and
lower limit reflects the ambiguity.

In contrast to the classical case of real-valued ex-
pected utility, where the usual ordering on the real
line can be used directly to judge which action is op-
timal, now different criteria make sense, depending
on the attitude towards ambiguity. (See the discus-
sions in the introduction and at the beginnings of
the Section 3, 4 and 5.) Before we discuss their effi-
cient handling, let us introduce for simplicity some

3For rigorous axiomatic justification of generalized ex-
pected utility in the sense of (2) and different criteria derived
from it see among others [8], [9], [18], as well as the refer-
ences therein, who manage to extend Neumann-Morgenstern
and Anscombe-Aumann theory to the situation of complex
uncertainty with partial prior information.

abbreviations:

π :=(π1, . . . , πm), πj :=π(ϑj),
uij :=u(ai, ϑj), uj(λ):=u(λ, ϑj),
B :=(b1, ..., br), B :=(b1, ..., br),
1 :=(1, ..., 1)T, Fj :=(f1(ϑj), ..., fr(ϑj)).

The obvious constraints λi ≥ 0 will be omitted in
most places.

3 Two algorithms for pessimistic
decision making

Under strict ambiguity aversion every action is eval-
uated by its minimal expected utility, and so, the
interval-valued expectations in (2) are represented
by the lower interval limits alone.
Then an action λ∗ is optimal iff for all λ

EMu(λ∗) ≥ EMu(λ). (5)

This criterion has been proposed under different
names. It corresponds to the Gamma-Minimax
criterion (as considered, e.g., in [4, Section 4.7.6],
[22]), to the Maxmin expected utility model [10], to
the MaxEMin criterion investigated by [13] (cf. al-
so [12] and the references therein) and the notion
of maximinity in [23]. In the case of two-monotone
capacities it is equivalent to maximizing Choquet
expected utility (as studied, e.g., in [5]).

The optimal randomized action λ∗ can be obtained
by maximizing EMu(λ) subject to λ·1 = 1. In oth-
er words, the following optimization problem has to
be solved:

EMu(λ) → max
λ

under the restrictions λ ·1 = 1. By substituting the
expression for Eπu(λ) into the objective function,
we get

min
π∈M

m∑

j=1

(uj(λ) · πj) → max
λ

(6)

subject to λ · 1 = 1.4 Two approaches for solving
the above problem will be proposed.

4We formulate all algorithms in terms of randomized ac-
tions. If consideration is confined to unrandomized actions,
the derived optimization problems still can be used by pass-
ing over to Boolean optimization. In this case, however,
depending on the situation, it may be more efficient to cal-
culate the lower and upper expectation (by linear program-
ming, or by Choquet-integration in the case of two-monotone
lower probabilities) for every action ai and then to compare



3.1 An approach based on extreme points

The first approach has been suggested by [1, 3].
After having introduced a new variable G =
minπ∈M Eπu(λ), the problem (6) can be rewritten
as

max
λ,G

G (7)

subject to G ∈ R, λ · 1 = 1 and

G ≤
m∑

j=1

(
n∑

s=1

usjλs

)
πj , ∀π ∈M. (8)

The optimization problem (7)-(8) is linear, but, in
the way it is written, it contains one constraint for
every π ∈ M, i.e. infinitely many constraints in
general. In order to overcome this difficulty, note,
however, that the set of distributions M can be
viewed as a simplex in a finite dimensional space.
According to some general results from linear pro-
gramming theory, for every fixed λ,

∑m
j=1 uj(λ) ·πj

attains its minimum at an extreme point of the con-
vex polyhedron M. Since the set E(M) of extreme
points is finite, this implies that the infinite set of
constraints (8) is reduced to some finite set, and
standard routines for linear programming can be
used to determine optimal actions. Finally, we have
the following linear programming problem for com-
puting the optimal randomized action:

max
λ,G

G (9)

subject to G ∈ R, λ · 1 = 1, and

G ≤
m∑

j=1

(
n∑

s=1

usjλs

)
πj , ∀π ∈ E(M). (10)

It is important to recall that this approach for
solving the decision problem requires the extreme
points of M. In the case where prior information is
given by two-monotone probabilities or belief func-
tions closed expressions are available (as used in the
corollaries in [1],[3]). In general, however, this task
is computationally expensive and may lead to the

the resulting values in order to find an optimal action.
In addition we would like to recall that – next to the issue of
easy computation – the representation as a linear program-
ming problem also provides plenty of theoretical insight (see
for instance the proof Lemma 2 here or the argumentation
in [1]).

need to solve a number of linear optimization prob-
lems in advance. Moreover, the number of extreme
points may become as large as m! [24], and so the
number of constraints may become very large. The
following approach allows us to avoid this difficulty;
solving one linear programming problem only will
prove to be sufficient.

3.2 An approach based on partial
dualization

This solution is based on the idea of partial dual-
ization of the problem in (6) with variables π and
λ. Take for the moment λ as fixed and replace
the remaining optimization problem with variables
π by the dual one (cf., e.g. ,[6]). Writing C =
(c1, ..., cr)T, D = (d1, ..., dr)T, the dual problem is
of the form

max
c,C,D

{
c + BC−BD

}

subject to c ∈ R, C,D ∈ Rr
+, and

c + Fj (C−D) ≤ uj(λ), j = 1, ..., m.

Here c,C,D are optimization variables such that
the variable c corresponds to the constraint∑m

j=1 πj = 1 in the primal form, ci corresponds
to the constraints bi ≤ Eπfi and di corresponds to
the constraints Eπfi ≤ bi. As pointed out in [21],
the dual problem has the same form as the natu-
ral extension [14, 23] in the framework of imprecise
probabilities.

Using the fact that at the optimum the objective
functions of the primal and the dual problem attain
the same value, i.e., that for fixed λ,

min
π∈M

m∑

j=1

(uj(λ) · πj) = max
c,C,D

{
c + BC−BD

}
,

the maximization over λ can be combined with the
dual optimization problem as follows:

max
c,C,D,λ

{
c + BC−BD

}
(11)

subject to c ∈ R, C,D ∈ Rr
+, λ · 1 = 1 and

c + Fj (C−D) ≤ uj(λ), j = 1, ...,m, (12)

We obtain a linear optimization problem with vari-
ables c, C, D, λ. This implies that the optimal



randomized action is found by solving the single
linear programming problem (11)-(12).5

4 Decision making with the caution
parameter

Already in the introduction it has been emphasized
that relying on strict ambiguity aversion may be
overpessimistic, and the upper interval limit of the
generalized expected utility should also be taken in-
to account. With respect to this more sophisticated
criterion, an action λ∗ is optimal iff for all λ

ηEMu(λ∗) + (1− η)EMu(λ∗)

≥ ηEMu(λ) + (1− η)EMu(λ) , (13)

with EMu(λ) and EMu(λ) from (3) and (4). The
caution parameter η reflects the degree of ambigui-
ty aversion (e.g., [25, Chapter 2.6]); the more ambi-
guity averse the decision maker is, the higher is the
influence of the lower interval limit of the general-
ized expected utility. η = 1 corresponds to strict
ambiguity aversion (pessimistic decision), i.e. the
case considered above, η = 0 expresses maximal
ambiguity seeking attitudes (optimistic decision).
The value 1−η can be interpreted as the probabili-
ty that nature will turn out as favorably as possibly
towards us as decision makers [17].

By using the above criterion, the following opti-
mization problem has to be solved:

ηEMu(λ) + (1− η)EMu(λ) → max
λ

(14)

subject to the constraints λ · 1 = 1.
The generalization of the algorithms developed in
the previous section needs some attention. Apply-
ing the method from Section 3.1 now leads to a bi-
linear optimization problem (cf. [1, Section 5.2]).
The idea to bound the objective function by a
penalty function [1, p. 19], however, fails, and it
seems not possible to reduce the calculation of the
optimum to a single linear optimization problem.
However, still solutions based on linear program-
ming can be obtained; again there are two ways,
depending whether the primal program or its dual
is used:

5Some remarks on the comparison of the two algorithms
will be made at the end of Section 4 in the extended setting
considered there.

4.1 A solution based on the extreme
points

For the generalization of the procedure described
in Section 3.1 based on the variable G =
minπ∈M Eπu(λ), relation (14) can be rewritten as

η ·G + (1− η)EMu(λ) → max
λ,G

subject to G ∈ R, λ · 1 = 1, and

G ≤
m∑

j=1

(
n∑

s=1

usjλs

)
πj , ∀π ∈ E(M). (15)

Note, however, that now the following asymmetry
occurs: Although EMu(λ) is attained at an element
of E(M), it is not possible to introduce a slack vari-
able for describing the value of EMu(λ), too. The
objective function would be unbounded. Instead,
one has to consider linear programming problems
where in the objective function EMu(λ) is replaced
by Eπ(z)u(λ) for some extreme point π(z) ∈ E(M),
i.e.,

η ·G + (1− η)
m∑

j=1

(
n∑

s=1

usjλs

)
π

(z)
j → max

λ
.

Taking the maximum over all these objective func-
tions arising from all elements of E(M) must give
the optimal value of (14), and the corresponding
solution λ(z) gives the optimal action under the
criterion (13).

In sum, in order to find an optimal randomized
action, we have to find all extreme points of the set
M and to solve the linear optimization problem for
every extreme point.

4.2 Dual form for solving the problem

An alternative approach for solving the problem is
to replace optimization problems (3)-(4) by dual
ones. Denote additionally

V = (v1, ..., vr)T, W = (w1, ..., wr)T.

By using notations introduced in the previous sec-
tions and the approach described in Section 3.2, we
can rewrite (14) as follows:

η · max
c,C,D

{
c + BC−BD

}
+

(1− η) · min
v,V,W

{
v + BV −BW

} → max
λ



subject to c, v ∈ R, C,D,V,W ∈ Rr
+, and

c + Fj (C−D) ≤ uj(λ), j = 1, ..., m,

v + Fj (V −W) ≥ uj(λ), j = 1, ..., m,

λ · 1 = 1.

By introducing a new variable H such that

H = min
{
v + BV −BW

}
,

we get the following equivalent problem:

η

{
max
c,C,D

(
c + BC−BD

)}
+ (1− η)H → max

λ

subject to c, v ∈ R, C,D,V,W ∈ Rr
+, and

c + Fj (C−D) ≤ uj(λ), j = 1, ..., m, (16)
v + Fj (V −W) ≥ uj(λ), j = 1, ..., m, (17)

v + BV −BW ≥ H, λ · 1 = 1. (18)

This problem is reduced to

η
{
c + BC−BD

}
+ (1− η)H → max

c,v,C,D,V,W,λ,H

(19)
subject to c, v ∈ R, C,D,V,W ∈ Rr

+, and (16)-
(18).

However, a problem similar to above occurs: by
maximizing the objective function, the variable H
will unrestrictedly increase with variables v, vk, and
wk. How to restrict these variables? Let us consider
in detail the problem

H∗ = min
{
v + BV −BW

}
(20)

subject to v ∈ R,V,W ∈ Rr
+, and

v + Fj (V −W) ≥ uj(λ), j = 1, ..., m. (21)

This linear programming problem has 2r + 1 vari-
ables and 2r + m constraints, where 2r constraints
are of the form: vk ≥ 0 and wk ≥ 0, i = 1, ..., r.
This implies that 2r + 1 equalities among 2r + m
inequalities have to take place. These equalities
restrict the values of vk, wk, and H. So, it is neces-
sary to solve

(
2r+m
2r+1

)
linear optimization problems

having 2r+1 equalities in constraints and to choose
the maximal solution from all possible ones. How-
ever, not all solutions to problem (19) satisfy (20)-
(21), that is, the optimal value of H in (19) may be
different from H∗ in (20)-(21) by the same optimal

λ. Therefore, after solving problem (19), optimal
values of λ are substituted into (21) and problem
(20)-(21) has to be solved. If H 6= H∗, then the
obtained optimal solution λ must be removed from
the list of possible ones. If H = H∗, then the ob-
tained optimal solution λ is a candidate for the final
optimal solution to (19). This implies that

(
2r+m
2r+1

)
linear optimization problems (20)-(21) have to be
additionally solved.

4.3 Numerical toy example

Let Θ = {1, 2, 3} and suppose that an expert pro-
vides the following two judgements: the mean value
of states is less than 2 (π1+2π2+3π3 ≤ 2); the prob-
ability of the third state is less than 0.3 (π3 ≤ 0.3).
In order to use the proposed algorithms, this in-
formation is formally represented as 1 ≤ Eπϑ ≤ 2
and 0 ≤ EπI{3}ϑ ≤ 0.3 (cp. equation (1).). Here
I{3}ϑ is the indicator function taking the value 1
if ϑ = ϑ3 and 0 if ϑ 6= ϑ3. So, we have r = 2,
m = 3, b1 = 1, b1 = 2, b2 = 0, b2 = 0.3. The utility
function usj is given in Table 1.

Table 1: Values of utilities u(as, ϑj)
ϑ1 ϑ2 ϑ3

a1 6 3 1
a2 2 7 4

Suppose η = 0.6. Let us firstly find the optimal
action by using the approach relying on the extreme
points. The set of classical probabilities induced by
the given judgements has the following four extreme
points (π(l)

1 , π
(l)
2 , π

(l)
3 ):

(1, 0, 0), (0, 1, 0), (0.7, 0, 0.3), (0.3, 0.4, 0.3).

Then the following optimization problem can be
written:

H = ηG + (1− η)((6π
(l)
1 + 3π

(l)
2 + 1π

(l)
3 )λ1

+(2π
(l)
1 + 7π

(l)
2 + 4π

(l)
3 )λ2) → max

λ1,λ2,G

subject to λ1 + λ2 = 1 and

6λ1 + 2λ2 ≥ G, 4.5λ1 + 2.6λ2 ≥ G,

3λ1 + 7λ2 ≥ G. 3.3λ1 + 4.6λ2 ≥ G.

By solving 4 optimization problems for every z =
1, ..., 4, we choose the optimal randomized action



(λ1, λ2) which provides the maximal objective func-
tion

z = 1, G =
31
9

, λ1 =
8
9
, λ2 =

1
9
, H = 4.29,

z = 2, G =
22
7

, λ1 =
2
7
, λ2 =

5
7
, H = 4.23,

z = 3, 4, G =
303
80

, λ1 =
5
8
, λ2 =

3
8
, H = 3.79.

It can be seen from the numerical results, that the
optimal action is λ1 = 8

9 , λ2 = 1
9 .

Now the dual approach for solving the problem will
be illustrated: The optimization problem (19) is
written as

η {c + c1 − 2d1 + 0c2 − 0.3d2}
+(1− η)H → max

c,v,C,D,V,W,λ,H

subject to c, v, H ∈ R,C,D,V,W ∈ R2
+, and

c + 1 (c1 − d1) + 0 (c2 − d2) ≤ 6λ1 + 2λ2,

c + 2 (c1 − d1) + 0 (c2 − d2) ≤ 3λ1 + 7λ2,

c + 3 (c1 − d1) + 1 (c2 − d2) ≤ 1λ1 + 4λ2,

v + 1 (v1 − w1) + 0 (v2 − w2) ≥ 6λ1 + 2λ2,

v + 2 (v1 − w1) + 0 (v2 − w2) ≥ 3λ1 + 7λ2,

v + 3 (v1 − w1) + 1 (v2 − w2) ≥ 1λ1 + 4λ2,

v + 2v1 − 1w1 + 0.3v2 − 0w2 ≥ H,

λ1 + λ2 = 1.

Since we have 5 variables v, v1, w1, v2, w2 (for the
subproblem (20)-(21)), the number of optimization
problems to be solved is 21. By replacing sym-
bols “≥” in inequalities containing at least one of
the variables v, v1, w1, v2, w2 by symbols “=”, we
can write 21 linear optimization problems. The
maximum of the objective function is achieved if
v1 = v2 = 0 and

v + 1 (v1 − w1) + 0 (v2 − w2) = 6λ1 + 2λ2,

v + 2 (v1 − w1) + 0 (v2 − w2) = 3λ1 + 7λ2,

v + 3 (v1 − w1) + 1 (v2 − w2) = 1λ1 + 4λ2.

At that λ1 = 8
9 , λ2 = 1

9 , H = 50
9 , and the value of

the objective function is 4.289. It is worth noticing
that the same solution is obtained for some differ-
ent combinations of equalities. In order to prove
that the obtained solution is optimal it is neces-
sary to solve optimization problem (20)-(21) with

λ = ( 8
9 , 1

9 ) and to compare the values of the objec-
tive functions (H and H∗). In the considered case,
problem (20)-(21) becomes

H∗ = v + 2v1 − 1w1 + 0.3v2 − 0w2 → min
v,vk,wk

subject to v ∈ R, vk, wk ∈ R+, and

v + 1 (v1 − w1) + 0 (v2 − w2) ≥ 6 · 8
9

+ 2 · 1
9
,

v + 2 (v1 − w1) + 0 (v2 − w2) ≥ 3 · 8
9

+ 7 · 1
9
,

v + 3 (v1 − w1) + 1 (v2 − w2) ≥ 1 · 8
9

+ 4 · 1
9
.

Hence H∗ = 50
9 and H = H∗. Therefore, λ = ( 8

9 , 1
9 )

is the optimal action.

4.4 On the comparison of both approaches

The superiority of one of the approaches for com-
puting the optimal randomized action by using the
caution parameter depends on the specific task
considered. It is obvious that the complexity of
searching the optimal action is mainly defined by
the number of optimization problems to be solved
and by the number of constraints to the optimiza-
tion problems. If the number of extreme points is
rather large, then the first approach may be prefer-
able. For example, if the available information
about states of nature {ϑ1, ..., ϑm} is restricted by
a few points, say r points: ϑl(1), ..., ϑl(r), r ¿ m,
of an unknown cumulative probability distribution
of states, then the number of extreme points can
be shown to be up to l(1) × (l(2) − l(1)) × ... ×
(l(r)−l(r−1)) and may be quite large. At the same
time, by using the second approach, it is necessary
to solve

(
2r+m
2r+1

)
linear optimization problems (19)

having 2m+2r+2r constraints and 2r+1 variables
and

(
2r+m
2r+1

)
linear optimization problems (20)-(21)

having m+2r constraints and 2r+1 variables. This
implies that the second approach is preferable.

Suppose now that r ≈ m, i.e., we do not know
only a few points of the probability distribution.
The number of extreme points may be expected
to be very small in this case, but the number of
constraints in the second approach is rather large.
Then the first approach should be used under this
initial information.



5 E-admissibility and maximality

A fundamental alternative to the criteria consid-
ered up to now is to understand indecision as a
natural consequence arising from the presence of
ambiguity. Instead of ordering all the actions ac-
cording to some real valued representation of the
interval-valued expected utility, the aim is now to
classify every action according to the dichotomy:
’acceptable’ or ’not acceptable’.

We study the criterion of E-admissibility (cf. [15],
[16]) in some detail and also briefly look at Walley’s
maximality criterion [23, Section 3.9]. An action
a∗ is said to be E-admissible with respect to a set
of prior probabilities M iff there exists a classical
prior π(·) such that a∗ is Bayes with respect to π(·),
i.e. iff for all other actions a under consideration

m∑

j=1

u(a∗, ϑj)π(ϑj) ≥
m∑

j=1

u(a, ϑj)π(ϑj) . (22)

5.1 A lemma from classical Bayesian
decision theory

Due to this direct connection to classical Bayesian
decision theory based on precise probabilities it
is beneficial to consider for a moment the classi-
cal basic decision problem (IA,Θ, u(·)) again with
|Θ| < ∞, but with a single classical prior π(·). In
this context, the next lemma shows: If finding only
one of the optimal actions is enough, then consider-
ation may be confined to the set of unrandomized
actions. Only if all optimal actions are needed, ran-
domized actions have to be taken into account; they
are obtained from convex combinations of optimal
pure actions.

Lemma 1 Let IA∗π be the set of all pure Bayes ac-
tions with respect to π(·), and Λ∗π the set of all ran-
domized Bayes actions with respect to π(·). Then

i) IA∗π 6= ∅
ii) Λ∗π = conv(IA∗π).6

Proof. The task of finding a Bayes action can be
written as a linear programming problem

m∑

j=1

(
n∑

i=1

u(ai, ϑj) λ(ai)

)
π(ϑj) −→ max

λ

6Here every pure action ai ∈ IA is identified with the
randomized action λ(a) = 1 if a = ai and λ(a) = 0 else, and
with the corresponding (n× 1) vector.

subject to
∑n

i=1 λ(ai) = 1, and λ(ai) ≥ 0, for all i.
Noting that the pure actions correspond to the ver-
tices of the polyhedron defined by the constraints,
both parts of the lemma follow immediately from
general results on linear programming: The fact
that one optimal solution must be attained at a
vertex gives the non-emptiness of IA∗π, while the
second statement is deduced from the convexity of
the set of optimal solutions.

5.2 An efficient algorithm for calculating
E-admissible actions

Based on these considerations we can develop a gen-
eral algorithm to calculate all E-admissible actions.
To do so, we turn the problem around and fix the
actions for a moment. More precisely, for every ac-
tion ai, i = 1, . . . n, we look at the set Πi of all
priors π(·) ∈ M under which ai is Bayes action
with respect to π(·). According to Lemma 1, for
every π(·), the maximum of expected utility with
respect to every π(·) is also attained at a pure ac-
tion, and so it suffices to compare

∑
u(ai, ϑj)π(ϑj)

with
∑

u(al, ϑj)π(ϑj) for all pure actions al:

Πi =
{

π(·) ∈M
∣∣∣∣

m∑

j=1

u(ai, ϑj)π(ϑj)

≥
m∑

j=1

u(al, ϑj)π(ϑj), ∀ l = 1, . . . , n

}

After having introduced an artificial auxiliary vari-
able z the following linear programming problem is
considered:7

z −→ max
(πT ,z)T

m∑

j=1

u(ai, ϑj) π(ϑj) ≥
m∑

j=1

u(al, ϑj)π(ϑj), (23)

∀l = 1, ..., n

m∑

j=1

π(ϑj) = z , z ≤ 1 , π(ϑj) ≥ 0 , j = 1, . . . , m ,

bl ≤
∑

fl(ϑj)π(ϑj) ≤ bl , l = 1, . . . , r .

Iff the optimal value of z equals 1, then Π is not
empty and ai is E-admissible.

7Alternatively, if the set E(M) of vertices M is avail-
able, then Πi = conv(πE ∈ E(M)|∑m

j=1 u(ai, ϑj) πE(ϑj) ≥∑m
j=1 u(al, ϑj) π(ϑj),∀l = 1, ..., n).



Therefore, for determining the set IA∗ of all
E-admissible pure actions n = |IA| simple linear
optimization problems have to be solved. In the
light of Lemma 1, the set IA∗ is so-to-say essentially
complete even in the set of all randomized actions:
IA∗ contains, for every π(·) ∈ M, an action that
is optimal with respect to π(·); by randomization
further E-admissible actions may be produced, but
they can not have a higher expected utility with
respect to π(·).
When the set IA∗∗ of all the E-admissible actions
in the set of randomized actions is of interest, Part
ii) of Lemma 1 has to be finally applied to those
π(·) where several pure actions are optimal. For
achieving this the algorithm above can be used in
an extended form. Instead of considering single ac-
tions ai and the corresponding sets Πi one has to
check for arbitrary subsets I ⊆ {1, . . . ,m} whether
there is a prior π under which all ai, i ∈ I are si-
multaneously optimal, i.e. one replaces (23) by

m∑

j=1

u(ai, ϑj)π(ϑj) ≥
m∑

j=1

u(al, ϑj) π(ϑj)

∀i ∈ I, l = 1, . . . , n.

If the corresponding set ΠI 6= ∅ all the elements of
conv(ai|i ∈ I) are E-admissible actions. Of course,
if ΠI = ∅ for some I then all index sets J ⊃ I need
not be considered anymore.

5.3 Maximality and structure dominance

The results just obtained are also of interest for
other criteria. If Π contains an element π(·) with
π(ϑj) > 0, for all j, then the corresponding action
ai is admissible (in terms of classical decision theo-
ry) and therefore, as can easily be shown, maximal
in the sense of Walley (cf. [23, Section 3.9]).

Furthermore, if Πi = M for some i then ai is uni-
formly optimal, a very strong criterion related to
Weichselberger’s concepts of structure dominance
(cf. [25, Chapter 4.2]).

6 Concluding remarks

The paper presented powerful algorithms for han-
dling sophisticated criteria for decision making un-
der partial information. Hopefully, the availability
of sound computational methods will stimulate ap-
plication to larger problems, and may so contribute

to gather experience on the performance of different
criteria in substantive scientific fields.

Also for such applications it is of interest to men-
tion explicitly that the results obtained here extend
to the case where additionally data from a sample
are available. One can either consider posteriori
partial information or use decision functions. How-
ever, attention has to be paid to the fact that – in
contrast to classical decision theory based on pre-
cise probabilities – both ways to proceed usually do
not coincide under partial information (cf. [2]).
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