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Abstract

Possibilistic networks and possibilistic logic bases are
important tools to deal with uncertain pieces of in-
formation. Both of them offer a compact represen-
tation of possibility distributions. This paper studies
a new representation format, called hybrid possibilis-
tic networks, which cover both standard possibilis-
tic networks and possibilistic knowledge bases. An
adaptation of propagation algorithm for singly (resp.
multiply) connected hybrid possibilistic networks is
provided.
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1 Introduction

Possibilistic and probabilistic networks
[2, 17, 19, 11, 14] are important tools proposed
for an efficient representation and analysis of uncer-
tain information.
Their success is due to their simplicity and their
capacity of representing and handling independence
relationships which are important for an efficient
management of uncertain pieces of information.
Possibilistic networks are directed acyclic graphs
(DAG), where each node encodes a variable and
every edge represents a ”causal” relationship between
two variables. Uncertainty is expressed by means of
conditional possibility distributions for each node in
the context of its parents.

The inference in possibilistic graphs depends on
the structure of a DAG. For simply connected
graphs, the inference process can be achieved in a
polynomial time. However, for multiply connected
graphs, the propagation algorithm is expensive and
generally requires a graphical transformation from
the initial graph to another tree structure such as a
junction tree. Nodes in this tree are sets of variables

called clusters. The propagation algorithm efficiency
depends on clusters’ size, and the space complexity
is function of cartesian product of clusters variables’
domains.

This paper proposes a new representation of un-
certain information in possibilistic networks. Local
uncertainty is no longer represented by condi-
tional possibility distributions but by possibilistic
knowledge bases. The main advantage of this repre-
sentation concerns space complexity. For instance, in
singly connected networks, it may happen that for
a given variable the number of parents can be very
high. In this case, it may be impossible to provide
the conditional possibility distributions for this
variable. In our framework, one can only provide a
compact representation of this conditional possibility
distributions by means of knowledge bases. A similar
remark also holds for multiply-connected networks.
Namely, during the junction tree construction, it
may happen that the size of clusters can be very
large. In this case, it can be impossible to construct
possibility distributions associated with clusters.
Our representation enables us to represent possi-
bilistic knowledge bases associated with large clusters.

The rest of this paper is organized as follows : first, we
give a brief background on possibilistic logic and prop-
agation algorithms for possibilistic networks (Section
2). Then, we present our new representation and show
how standard possibilistic networks and possibilistic
bases can be encoded in the framework (Section 3).
The adaptation of propagation algorithms are pro-
posed in Section 4 for polytree networks and in Sec-
tion 6 for multiply connected graphs.



2 Possibilistic logic

2.1 Possibility distributions

Let V = {A1, A2, ..., An} be a set of variables. DAi

denotes the finite domain associated with the variable
Ai. For the sake of simplicity, and without lost of
generality, variables considered here are assumed to
be binary. ai denotes one of the two instances of Ai

and ¬ai represents the other instance of Ai. ϕ,ψ, ..
denote propositional formulas obtained from V and
logical connectors ∧,∨,¬. ⊥ denotes contradiction.
Ω = ×Ai∈V DAi

represents the universe of discourse
and ω, an element of Ω, is called an interpretation.
It is either denoted by tuples (a1, ..., an) or by
conjunctions (a1 ∧ ... ∧ an), where ai’s are respective
instances of Ai’s. In the following, |= denotes the
propositional logic satisfaction. ω |= ϕ means that ω
is a model of ϕ.

A possibility distribution π is a mapping Ω → [0, 1].
π(ω) denotes the compatibility degree of an interpre-
tation ω with available pieces of information. By con-
vention, π(ω) = 0 means that the interpretation ω is
impossible. π(ω) = 1 means that ω is totally possible.
π(ω) > π(ω′) means that ω is preferred to ω′. A pos-
sibility distribution is said to be normalized if there
exists an interpretation ω such that π(ω) = 1.
Given a possibility distribution π, two dual measures
are defined:
- Possibility measure of a formula ϕ:

Π(ϕ) = max{π(ω) : ω |= ϕ}

which represents the compatibility degree of ϕ with
available pieces of information encoded by π.
- Necessity measure of a formula ϕ:

N(ϕ) = 1−Π(¬ϕ)

which corresponds to the certainty degree associated
with ϕ from available pieces of information encoded
by π.

Lastly, several definitions of possibilistic conditioning
have been proposed in the literature [13, 9, 4, 10]. In
this paper, we simply recall the conditioning defini-
tion, defined by :

π(ω | φ) =

 1 if π(ω) = Π(φ) and ω |= φ
π(ω) if π(ω) < Π(φ) and ω |= φ
0 otherwise.

(1)

2.2 Possibilistic knowledge bases

A possibilistic knowledge base is a finite set of
weighted formulas Σ = {(ϕi, αi) , i = 1, ...,m}, where

ϕi is a propositional formula and αi ∈ [0, 1]. (ϕi, αi)
can be viewed as a constraint stating that the cer-
tainty degree of ϕi is at least equal to αi, namely
N(ϕi) ≥ αi.
Possibilistic knowledge bases are compact representa-
tions of possibility distributions. Namely, each pos-
sibilistic knowledge base induces a unique possibility
distribution, defined by [8]:
∀ω ∈ Ω,

πΣ(ω) =
{

1 if ∀(ϕi, αi) ∈ Σ, ω |= ϕi,
1−max{αi : ω 6|= ϕi} otherwise.

(2)

Example 1 Let Σ = {(a∨¬b, 1
4 ), (b, 1

2 ), (¬a∨¬b, 3
4 )}

be a possibilistic knowledge base. The possibility dis-
tribution πΣ associated with Σ is given in Table 1.

A B πΣ(AB)
a b 1/4
a ¬b 1/2
¬a b 3/4
¬a ¬b 1/2

Table 1: Joint possibility distribution πΣ

The following definitions are useful for the rest of the
paper:

Definition 1 Two possibilistic knowledge bases Σ1

and Σ2 are said to be equivalent if their associated
possibility distributions are equal, namely :

∀ω ∈ Ω, πΣ1(ω) = πΣ2(ω)

Subsumption definition is as follows :

Definition 2 Let (ϕ, α) a formula in Σ. Then (ϕ, α)
is said to be subsumed by Σ if Σ and Σ\{(ϕ, α)} are
equivalent knowledge bases.

Namely, subsumed formulas are redundant formulas
that can be removed (or added) without changing
possibility distributions.

Example 2 Let Σ′ = {(a ∨ ¬b, 1
4 ), (b, 1

2 ), (¬a ∨
¬b, 3

4 ), (a ∨ b, 1
2 )} be a possibilistic knowledge base.

The formula (a ∨ b, 1
2 ) is subsumed by Σ′ since the

possibility distribution πΣ′ associated with Σ′ (see Ta-
ble 2) is equivalent to the one associated with Σ =
Σ′\{(a ∨ b, 1

2 )} (see Table 1).

A possibilistic knowledge Σ is said to be consistent
if its classical support, obtained by forgetting the
weights, is classically consistent.



A B πΣ′(AB)
a b 1/4
a ¬b 1/2
¬a b 3/4
¬a ¬b 1/2

Table 2: Joint possibility distribution πΣ′

Definition 3 Let Σ be a possibilistic knowledge base.
The inconsistency degree of Σ, denoted Inc(Σ), is de-
fined by :

Inc(Σ) = max{αi : Σ≥αi
|= ⊥} (3)

where Σ≥αi
is a set of possibilistic formulas in Σ hav-

ing a weight greater or equal to αi.

Inc(Σ) = 0 means that Σ is consistent.

Example 3 Let Σ = {(a ∨ b, 3
4 ), (¬a ∨ b, 1

2 ), (¬b, 1
4 )}

be a possibilistic knowledge base. Σ\{¬b, 1
4} is con-

sistent. By adding the formula (¬b, 1
4 ), Σ becomes

inconsistent. Then, Inc(Σ) = 1
4 .

2.3 Standard possibilistic networks

Possibilistic networks, denoted ΠG, are graphically
represented by directed acyclic graphs (DAG). Nodes
correspond to variables and edges encode ”causal”
relationships among variables. A node Aj is said to
be a parent of Ai if there is an edge from the node Aj

to the node Ai. Parents of Ai are denoted by UAi
.

Uncertainty is represented at each node by local
conditional possibility distributions. More precisely,
for each variable A:
If A is a root, namely UA = ∅, then

max(Π(a),Π(¬a)) = 1.
If A has parents, namely UA 6= ∅, then

maxa Π(a | uA) = 1,∀a ∈ DA, uA ∈ DUA
.

where DUA
is the cartesian product of domains of

variables which are parents of A.

Possibilistic networks are also compact representation
of possibility distributions. More precisely, joint pos-
sibility distributions associated with min-based pos-
sibilistic network is computed using a so-called ”min-
based chain rule” similar to the probabilistic ”chain
rule” :

πΠG(a1, ..., an) = min
i=1..n

Π(ai | uAi
), (4)

where ai is an instance of Ai and uAi ⊆ {a1, ..., an} is
an element of the cartesian product of domains asso-
ciated with variables UAi

which are parents of Ai.

Example 4 Figure 1 gives an example of possi-
bilistic networks. Table 3 provides local conditional
possibility distributions of each node given its parents.

Figure 1: Example of possibilistic causal network ΠG

a 1
¬a 3

4

b 1
2

¬b 1

C|AB ab ¬ab else
c 1 1

2 1
¬c 1

4 1 3
4

Table 3: Local conditional possibility distributions as-
sociated with DAG of Figure 1

Using possibilistic chain rule, the joint possibility dis-
tribution Π(ABC) = ΠΠG(ABC) (see Table 4) asso-
ciated with the possibilistic network ΠG is computed
using Equation 4.

A B C min(π(A), π(B), π(C|AB))
a b c 1/2
a b ¬c 1/4
a ¬b c 1
a ¬b ¬c 3/4
¬a b c 1/2
¬a b ¬c 1/2
¬a ¬b c 3/4
¬a ¬b ¬c 3/4

Table 4: Joint possibility distribution Π(ABC)

Propagation algorithms aim to establish a posteriori
possibility distributions of each node A given some
evidence on a set of variables E.
Propagation algorithms on polytree (singly connected
networks) can be achieved in polynomial time, while
propagation algorithms on multiply connected graphs
are NP-complete [5].



3 Possibilistic networks with local
knowledge bases

3.1 Definition of hybrid graphs

Pieces of information can be provided either in terms
of possibilistic knowledge bases or in terms of condi-
tional possibilities (if the size of universe of discourse
is reasonable). They can also be represented either
using graphical structures or logic-based structures.
The aim of the new representation is to take ad-
vantage of these two possible representation formats.
Graphical representation is used to take advantage
of independence relations, and logic-based represen-
tation is used to have compact representation of pos-
sibility distributions.
There have been some works which exploit comple-
mentarity between classic logic and local propagation.
An example of these works is Wilson and Mengin’s
work [21] which uses local computation for reasoning
on classic logic.
This paper deals with hybrid possibilistic graphs (see
also [3]). More precisely, hybrid possibilistic causal
networks, denoted HG, are characterized by :

• A graphical component which is represented by a
DAG (like standard possibilistic causal networks)
that allows to represent independence relation-
ships.

• A quantitative component which encodes uncer-
tainties. It associates to each node a local knowl-
edge bases instead of a conditional possibility dis-
tribution. Namely, at each node Ai, one provides
a possibilistic knowledge base ΣAi

which repre-
sents local knowledge base on A and its parents.
Figure 2 provides an example of hybrid possibilis-
tic graphs.

Figure 2: Hybrid graph HG with local knowledge
bases

Hybrid graphs are also compact representations of
joint possibility distributions. Namely, a possibility
distribution associated with a hybrid possibilistic net-
work HG is defined by :

∀ω, πHG(ω) = min
Ai∈V

πΣAi
(ω) (5)

where πΣAi
is the possibility distributions associated

with ΣAi obtained using equation 6.

Next section shows that any possibilistic network ΠG
(where local uncertainty is represented by a possibility
distribution), can be represented by hybrid networks
HG.

3.2 From ΠG to HG

We start by considering standard possibilistic causal
networks ΠG where uncertainty is represented at the
level of nodes by conditional possibility and a priori
distributions.
Let A be a binary variable and ai be an instance of
this variable. Let π(ai|ui) be a local possibility degree
associated with A where ui is an element of cartesian
product of its parents (UA) domains. Let us asso-
ciate the following possibilistic knowledge base with
the node A :

ΣA = {(¬ai ∨ ¬ui, αi) : αi = 1− π(ai|ui) 6= 0}. (6)

It’s easy to check that the conditional possibilities are
recovered from ΣA using Equation 2. πΣAi

(ai ∧ui) =
1 − αi holds since interpretations that satisfy ai ∧ ui

falsify (¬ai ∨ ¬ui, αi). Normalization is also assured
since πΣAi

(ui) = max(πΣAi
(ai∧ui), πΣAi

(¬ai∧ui)) =
1 (i.e. ¬ai ∧ ui satisfies (¬ai ∨ ¬ui, αi)).
Then, it can be easily proved that ∀ω,

πΠG(ω) = πHG(ω) (7)

where πΠG and πHG are obtained by using equations
4 and 5.

Example 5 Let us build a hybrid possibilistic causal
networks HG from standard possibilistic causal
network ΠG of example 4 by associating knowledge
bases to each node using 6. Uncertainty at the level
of nodes A,B and C (binary variables) is represented
by possibilistic knowledge bases ΣA, ΣB and ΣC as
follows:
ΣA = {(a, 1

4 )}
ΣB = {(¬b, 1

2 )}
ΣC = {(¬a ∨ ¬b ∨ c, 3

4 ), (a ∨ ¬b ∨ ¬c, 1
2 ), (¬a ∨ b ∨

c, 1
4 ), (a ∨ b ∨ c, 1

4 )}

We can observe that the joint possibility distribution
πHG(ABC) (given in Table 5 using Equation 5) is
the same as the one given in Example 4. We can
check that, ∀ω, πΠG(ω) = πHG(ω). For instance,
πHG(¬ab¬c) = πΠG(¬ab¬c) = 1

2 .

3.3 From HG to ΠG

Each hybrid possibilistic network can also be ex-
pressed by a standard possibilistic network, provided



ω πΣA
πΣB

πΣC
πHG

abc 1 1/2 1 1/2
ab¬c 1 1/2 1/4 1/4
a¬bc 1 1 1 1
a¬b¬c 1 1 3/4 3/4
¬abc 3/4 1/2 1/2 1/2
¬ab¬c 3/4 1/2 1 1/2
¬a¬bc 3/4 1 1 3/4
¬a¬b¬c 3/4 1 3/4 3/4

Table 5: Joint possibility distribution ΠHG(ABC)

that the number of parents of each node is not very
high. The graphical component is the same. The con-
ditional possibility distributions are simply the ones
associated with the knowledge bases. More precisely,
let Ai be variable and ui be an element of the carte-
sian product of domains associated with variables UAi

which are parents of Ai. Let ΣAi
be the local knowl-

edge base associated with the node Ai. Then, the
conditional possibility degree π(ai|ui) is defined by
π(ai|ui) = π(ai∧ui) = πΣAi

(ai∧ui) and πΣAi
(ai∧ui)

is defined using Equation 2

Example 6 Let us consider the hybrid possi-
bilistic network built in Example 5. The standard
possibilistic network is obtained by computing, for
each variable in the network, the local conditional
possibility degree from the local possibility knowledge
base associated with the node using Equation 2.
Uncertainty at the level of nodes A,B and C (binary
variables) is represented by possibiliy distributions:

a 1
¬a 3

4

b 1
2

¬b 1

C|AB ab ¬ab else
c 1 1

2 1
¬c 1

4 1 3
4

which are the same that in Table 3. Then, we can
check that, ∀ω, πΠG(ω) = πHG(ω). For instance,

πΠG(¬ab¬c) = min(π(¬a), π(b), π(¬c|¬ab))
= min( 3

4 ,
1
2 , 1) = 1

2 .

which is the same as πHG(¬ab¬c) given in Example
5.

3.4 From HG to Σ

The knowledge base Σ built from a hybrid possibilistic
network HG is the result of the fusion of elementary
bases. These bases correspond exactly to the local
possibilistic knowledge bases {ΣAi

: i = 1, ..., n}
provided at the level of each node {Ai : i = 1, ..., n}
in the network.

Proposition 1 The possibilistic knowledge base Σ
associated with a hybrid possibilistic network HG is:

Σ =
⋃

i=1,...,n

ΣAi
(8)

where {ΣAi : i = 1, ..., n} are local possibilistic knowl-
edge bases associated with nodes {Ai : i = 1, ..., n} in
HG.

Then,

πHG(ω) = πΣ(ω) (9)

Example 7 Let us consider the hybrid possibilistic
graph HG in Figure 2 and its local possibilistic
knowledge bases built in Example 5. The knowledge
base Σ built from this hybrid possibilistic network is:

Σ = ΣA ∪ ΣB ∪ ΣC

= {(a, 1
4 ), (¬b, 1

2 ), (¬a ∨ ¬b ∨ c, 3
4 ), (¬a ∨ b ∨ c, 1

4 )}

The formulas (a ∨ ¬b ∨ ¬c, 1
2 ) and (a ∨ b ∨ c, 1

4 ) are
subsumed formulas.

We can check that ∀ω, πHG(ω) = πΣ(ω). For in-
stance,
πΣ(¬ab¬c) = 1− 1

2 = 1
2

which is the same that πHG(¬ab¬c) computed in Ex-
ample 5.

Note that the transformation from HG into Σ results
in the loss of independence relations present in HG.

3.5 From Σ to HG

The encoding of possibilistic knowledge base Σ is im-
mediate. Its associated hybrid possibilistic network
HG can be constructed in the following way :
- Select arbitrary a variable A. Assign to A the knowl-
edge base Σ.
- For each variable B 6= A, add a link from B to A.
- Assign an empty possibilistic knowledge base to B.
Then,

πHG(ω) = πΣ(ω) (10)

since πHG = πΣA
and ΣA = Σ.

Example 8 Let us consider the possibilistic knowl-
edge base Σ in Example 7. We propose to build a
hybrid possibilistic network from Σ.

- We select the variable A. Then, we assign to A the
knowledge base ΣA = Σ,



- We add a link from B to A and from C to A,
- We assign to B and C empty knowledge bases:
ΣB ← ∅, ΣC ← ∅.

It can be checked that ∀ω, πHG(ω) = πΣ(ω). For in-
stance,
πHG(¬ab¬c) = min( 3

4 ,
1
2 , 1) = 1

2
which is the same that πΣ(¬ab¬c) computed in Exam-
ple 7 where πΣ is obtained using Equation 2 and πHG

is obtained using Equation 5.

4 Prior propagation in hybrid
singly-connected possibilistic
networks

Polytrees are simply connected networks where there
are no two nodes that can be connected by more than
one path. For sake of simplicity, we only recall prior
propagation. The propagation process is based on
message passing from roots to leafs. Roots send their
a priori distributions to their children. Each node
(except roots), receiving a message, computes its own
marginal distribution and send it to its children. The
marginal distribution Π(A) at the level of each node
A is obtained by the following equation :

π(a) = max
u1,..,un

minπ(a, u1, ..., un),

= max
u1,..,un

min(πi(a|u1, .., un), πi(u1, .., un),

= max
u1,..,un

min(πi(a|u1, .., un), πi(u1), .., πi(un))

(11)

where ui (i = 1, .., n) is an instance of Ui (i = 1, .., n)
which is a parent of A. π(ui) denotes local
possibility measures at the level of the node
Ui (parent of A) when Ui = ui after receiv-
ing message from it’s parents. In the last step,
πi(u1, .., un) = min(πi(u1), .., πi(un)) is used since
parents of a common node are independent (i.e. par-
ents are d-separated by all their common children).

Propagation algorithms can be efficiently achieved for
polytree structures. Therefore, the only situation
where hybrid graphs can be useful for polytree is when
the set of parent’s variables is important, from which,
it is impossible to represent conditional possibility dis-
tributions.
In this section, we present the counterpart of a pri-
ori propagation algorithm for polytree networks using
hybrid representation of uncertainty.
The prior propagation algorithm consists of comput-
ing the marginal Π(A) for each node A. The lat-
ter collects information from its parents to update
its own beliefs. The collected information in a stan-

dard possibilistic network consists of the marginals
{π(Ui) : i = 1, ..., n} of the node’s parents (see Equa-
tion 11). In case of hybrid representation, these mar-
ginals can be computed from local knowledge bases
{ΣUi : i = 1, ..., n}. The main steps of the algorithm
are as follows :

4.1 Receiving messages:

When a node A receives a message π(Ui) from its
parent Ui. A formula (¬ui, 1 − π(ui)) is added to
the local knowledge base ΣA for each instance ui of
Ui. These added formulas represent the syntactical
counterpart of marginalization of the local knowledge
ΣUi (i.e. π(Ui)) by considering the unique variable
Ui.

4.2 Sending messages:

After receiving messages from all its parents, each
node A computes the message to send to its children.
This message represents the marginal distribution on
the variable A. It can be directly and syntactically
obtained from the local knowledge base ΣA by con-
sidering the following proposition :

Proposition 2 Let Σ be a possibilistic knowledge
base. Let a be an instance of A. Then,

π(a) = 1− Inc(Σ ∪ {(a, 1)})

where Inc(Σ ∪ {(a, 1)}) is the inconsistency degree of
Σ ∪ {(a, 1)}. For computing the inconsistency degree
Inc see [8].

Lang [16] proposed an algorithm to compute the in-
consistency degree of Σ which requires log2 n satisfi-
ability checks using any prover for the propositional
satisfiability problem SAT where n is the number of
different valuations involved in Σ.

Example 9 Let us consider the singly-connected
possibilistic network given in the Figure 1 and its
local knowledge bases defined in Example 5. Suppose
that A is sending a message to C. The node A
computes the message to send to its child C:

- π(a) = 1− Inc(ΣA ∪ {(a, 1)}) = 1− 1 = 0,
- π(¬a) = 1− Inc(ΣA ∪ {(¬a, 1)}) = 1− 1

4 = 3
4 .

The node C receiving the message, add the formula
(a, 1

4 ) to its local knowledge base ΣC .



5 Propagation in multiply connected
graphs

One of well-known algorithm to deal with multiply
connected graphs (graphs containing loops) proceeds
to a transformation of the initial graph into a junction
tree. The main idea is to delete loops from the initial
graph gathering some variables in the same node.
The resulting graph is a tree where each node, called
cluster, is a set of variables. Common variables of
two adjacent clusters are grouped into another type
of node, called separator.
The propagation is performed by a message passing
mechanism. The algorithm stops when the junction
tree is globally consistent, namely when adjacent
clusters have the same marginal distributions over
common variables. For more details on junction tree
propagation algorithm in possibility theory frame-
work see [11, 1]. One of the limits of junction tree
algorithm is that the transformation step of initial
multiply connected graph can produce clusters with
a great number of variables. In that case, it may be
impossible to get local joint possibility distributions
on clusters.
We call hybrid junction tree, denoted HJT , a
junction tree where uncertainty is represented over
clusters by possibilistic knowledge bases, instead of
possibility distributions.

Before introducing the propagation algorithm in hy-
brid junction tree, we need to present the notion of
prioritized forgetting (see [3]) which allow to give the
syntactic counterpart of a marginalization process.
This approach which dealing with possibilistic knowl-
edge bases is an extension of the one proposed by Lin
and Reiter [18] for classical propositional logic (also
see Darwiche, Lang and Marquis’s works [15, 6] for
details).
Let Σ1 and Σ2 be two possibilistic knowledge bases.
The disjunction of these two bases in possibilistic
framework, denoted 6, is defined as follows :
Σ16Σ2 = {(ϕi ∨ ψj ,min(αi, βj)) : (ϕi, αi) ∈ Σ1 and
(ψj , βj) ∈ Σ2}
Prioritized forgetting, denoted pforget, can then be
defined as follows:

Definition 4 Let Σ be a possibilistic knowledge base
and X be a variable set. The prioritized forgetting
of X in Σ, denoted pforget(Σ, X), is equivalent to a
possibilistic formula defined as follows :

• pforget(Σ, ∅) = Σ,

• pforget(Σ, {x}) = Σ16Σ2,

• pforget(Σ, X∪{x}) =pforget(pforget(Σ, X), {x}).

Prioritized forgetting allows to syntacticly capture
the base associated with marginal distributions.
Next subsections present the different steps of pos-
sibilistic propagation adaptation in case of hybrid
representation.

To illustrate main concepts of the propagation algo-
rithm, we will use the following causal networks :

Example 10 Figure 3 gives an example of multiply-
connected possibilistic networks. Table 6 provides
conditional possibility distributions of each node given
its parents.

Figure 3: Multiply-connected hybrid possibilistic
causal network ΠG

a 1
4

¬a 1

B|A a ¬a
b 1

4
1
4

¬b 1 1

C|A a ¬a
c 1 1

2

¬c 3
4 1

D|BC bc ¬bc else
d 1 1

4 1
¬d 1

2 1 1

Table 6: Local conditional possibility distributions as-
sociated with DAG of Figure 3

The joint possibility distribution associated with this
network is given in the table 7. Let us build a hybrid
possibilistic causal network HG from the standard
possibilistic causal network ΠG by associating knowl-
edge bases to each node using Equation 6.
Uncertainty at the level of nodes A,B,C and D is
represented by possibilistic knowledge bases ΣA, ΣB,
ΣC and ΣD as follows:

ΣA = {(¬a, 3
4 )}

ΣB = {(¬a ∨ ¬b, 3
4 ), (a ∨ ¬b, 3

4 )}
ΣC = {(a ∨ ¬c, 1

2 ), (¬a ∨ c, 1
4 )}

ΣD = {(b ∨ ¬c ∨ ¬d, 3
4 ), (¬b ∨ ¬c ∨ d, 1

2 )}



A B C D π(ABCD)
a b c d 1/4
a b c ¬d 1/4
a b ¬c d 1/4
a b ¬c ¬d 1/4
a ¬b c d 1/4
a ¬b c ¬d 1/4
a ¬b ¬c d 1/4
a ¬b ¬c ¬d 1/4
¬a b c d 1/4
¬a b c ¬d 1/4
¬a b ¬c d 1/4
¬a b ¬c ¬d 1/4
¬a ¬b c d 1/4
¬a ¬b c ¬d 1
¬a ¬b ¬c d 1
¬a ¬b ¬c ¬d 1

Table 7: Joint possibility distribution Π(ABCD)

5.1 Initialization

This step consists of initializing the junction tree by
assigning knowledge bases to clusters and separators.

• An empty knowledge base ΣCi
is first assigned to

each cluster Ci.

ΣCi ← ∅

• An empty knowledge base ΣSij is also assigned
to each separator Sij .

ΣSij
← ∅

• For each binary variable A, select a cluster Ci

containing {A}∪UA and we add to the knowledge
base ΣCi the possibilistic base ΣA associated with
A.

ΣCi ← ΣCi ∪ ΣA

If there are some observations (evidence), then for any
observed variable Ai = ai select a cluster contain-
ing the variable Ai, and add the possibilistic formula
(ai, 1) to the knowledge base associated with this clus-
ter.

Proposition 3 Let HG be a hybrid possibilistic
causal network. Let HJT be the junction tree associ-
ated to HG. Let {ΣCi

: i = 1, ..., n} be the knowledges
bases associated to clusters {Ci : i = 1, ..., n} at the
end of the initialization step. Then we have:

πHG = min
Ci

πΣCi

Example 11 Given the junction tree (Figure 4)
built from the hybrid possibilistic graph HG given in
Figure 10, local knowledge bases on clusters after the
initialization step are as the following :
- ΣC1 = ΣA ∪ ΣB ∪ ΣC = {(¬a, 3

4 ), (¬a ∨ ¬b, 3
4 ), (a ∨

¬b, 3
4 ), (a ∨ ¬c, 1

2 ), (¬a ∨ c, 1
4 )}

- ΣC2 = ΣD = {(b ∨ ¬c ∨ ¬d, 3
4 ), (¬b ∨ ¬c ∨ d, 1

2 )}

Let us consider the interpretation ω = ¬ab¬cd. We
have :
πHG(¬ab¬cd) = min(πΣC1

(¬ab¬c), πΣC2
(b¬cd)) = 1

4
which is the same as the one obtained from Example
10.

After the initialization step, messages are sent be-
tween clusters in order to guaratee the consistency
conditions.
If, for instance, for given two clusters Ci and Cj we
have

max
Ci\Sij

πCi
6= max

Cj\Sij

πCj
,

then Ci and Cj should update their knowledge bases
iteratively.

Example 12 The junction tree given in Example 11
is not globally consistent: the joint distribution among
B and C computed from ΣC1 is different from the one
computed from ΣC2 . For instance,
πΣC1

(bc) = 1
4 is different from πΣC2

(bc) = 1.

The following two elementary steps are repeated until
reaching consistency:

- A separator Sij computes its knowledge base from
Ci (resp. Cj).
- A cluster Cj (resp. Ci) updates its knowledge base
taking into account knowledge base of the separator
previously computed.

Figure 4: Message passing in the junction tree HJT

5.2 Updating separators

The knowledge base ΣSij
, associated with a separator

Sij , represents the restriction (marginalization) of the
base ΣCi (resp. ΣCj ) on common variables in the
separator Sij . This knowledge base is immediately



obtained using the prioritized forgetting notion.
Let V ′ be the set of variables in Ci\Sij . Then,

ΣSij
= pforget(ΣCi

, V ′)

Example 13 Let us compute the knowledge base
ΣS12 , associated with the separator S12 from ΣC1 .
This leads to forgetting the variable A. Let us apply
the definition of pforget :
- Σa←⊥ = {(¬b, 3

4 ), (¬c, 1
2 )}

- Σa←> = {(⊥, 3
4 ), (¬b, 3

4 ), (c, 1
4 )}

ΣS12 = pforget(ΣC1 , {A}) = {(¬b, 3
4 ), (¬c, 1

2 ), (¬b ∨
¬c, 1

2 ), (¬b ∨ c, 1
4 )} = {(¬b, 3

4 ), (¬c, 1
2 )} .

(¬b ∨ ¬c, 1
2 ) and (¬b ∨ c, 1

4 ) are subsumed formulas.

5.3 Updating clusters

When receiving message from separator Sij , the clus-
ter Ci updates its knowledge base as follows :

ΣCj
← ΣSij

∪ ΣCj
(12)

This is justified by the following proposition :

Proposition 4 Let HG be a hybrid possibilistic
causal network. Let HJT a junction tree associated
with HG. Let {ΣCi

: i = 1, ..., n} be the knowledge
bases associated to clusters {Ci : i = 1, ..., n} after
each updating step (see Equation 12). Then, we have
: ∀ω,

πHG(ω) = minCi
πΣCi

(ω)

The algorithm continues updating separators and
clusters until reaching stability (global consistency) in
the junction tree. Formally, after propagation, ΣSij

must satisfy the following condition:

πΣSij
= max

Ci\Sij

πΣCi
= max

Ci\Sij

πΣCj
(13)

Example 14 The knowledge base ΣC2 associated
with the cluster C2 receiving ΣS12 is :
ΣC2 = ΣC2 ∪ ΣS12

= {(b ∨ ¬c ∨ ¬d, 3
4 ), (¬b, 3

4 ), (¬c, 1
2 )}

The formula (¬b ∨ ¬c ∨ d, 1
2 ) is subsumed by (¬b, 3

4 ).

At the end of propagation process, we obtain the fol-
lowing local knowledge bases:
- ΣC1 = {(¬a, 3

4 ), (¬b, 3
4 ), (¬c, 1

2 )}.
- ΣC2 = {(¬b, 3

4 ), (¬c, 1
2 ), (b ∨ ¬c ∨ ¬d, 3

4 )}.
It can be checked that HJT is consistent.

6 Conclusion

This paper has presented hybrid possibilistic causal
networks where knowledge bases are used instead

of local conditional possibility distributions. We
have shown how propagation algorithms in polytrees,
and in junction trees, can be adapted. For clarity
reasons, variables were restricted to binary ones.
However, the results in this paper can be extended
to non-binary variables.
For polytrees, our representation can only be useful
for a specific situation where nodes can have a high
number of parents. For multiply connected graphs,
our representation is very useful.

First experimental results [3] are promising since the
algorithm allows to deal with examples of multiply
connected graphs that cannot be represented by
junction tree with local conditional possibility distri-
butions.

This paper basically focuses on improving one of
well-known possibilistic propagation algorithms,
which is based on junction tree construction. The
improvement concerns space complexity namely
when clusters’ sizes are large.
Of course, there are alternative approaches to
junction tree like local computation frameworks
[21, 20, 12] on possibilistic hypergraphs [9].
Other approaches use local computation ideas for
computing propositional or possibilistic logical de-
duction [21, 20]. These approaches have perspectives
different from the one paper.

A future work will be to experimentally compare these
alternative approaches with our algorithm. We will
also consider the use of compilation approaches (like
the one based on d-DNNF format [7]) for computing
prioritized forgetting variables.
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