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Abstract

The standard framework of decision theory has no an-
swer to the question how to deal with partial or fuzzy
information. In this article two frameworks are pre-
sented and compared. The first one uses fuzzy prob-
abilities as in [Buckley 2003] and has been developed
by Dubois/Prade [Dubois 1979]. The data-based case
is added here. The second framework deals with im-
precise probabilities as in [Walley 1991] and proposes
a model similar to that by [Kofler 1976]. Furthermore
the two frameworks are compared with classical sta-
tistical decision theory. It is shown that both of them
are similar concerning the mathematical techniques
they require but are different regarding the knowledge
the decision maker has about the probabilities.

Keywords. decision making, fuzzy probabilities, im-
precise probabilities

1 Introduction

Decision theoretic models are widely used especially
in economics but also in other disciplines. Recent re-
search is still focused on decisions under risk. This
means that most parts of decision theory assume that
decision makers have complete knowledge about the
distribution from which states of nature are drawn.
This assumption is often unrealistic and leads pos-
sibly to wrong conclusions if the decision maker is
averse to ambiguity. That economic agents are mostly
ambiguity averse has been shown in the experiments
of Ellsberg!. One well known proposal to overcome
this problem is the Hodges-Lehmann-Rule? that pro-
poses a mixture of the maximin rule and the classical
Bayesian rule. But also the Hodges-Lehmann-Rule is
not always satisfactory as a unique prior distribution
is still needed. The approaches that are presented in
this paper cope with the problem of ambiguity by us-

Isee [Ellsberg 1961]
2see [Hodges 1952]

ing soft probabilities such as imprecise probabilities 3
or fuzzy probabilities . In chapter 2 decision making
with fuzzy probabilities is presented. In section 2.1
the foundations of fuzzy probabilities and the corre-
sponding probability theory is characterized, followed
by decision making with fuzzy probabilities in section
2.2. The third chapter is likely structured as there
will be the basics of imprecise probabilities in section
3.1 and the decision problems in section 3.2. In chap-
ter 4 the frameworks are compared with the classical
statistical decision theory.

Please note that all probability measures in this arti-
cle are discrete. The continuous case will bring no new
insight but is mathematically more demanding. The
models in this paper are kept simple, further readings
are given in footnotes.

2 Decision Theory with Fuzzy
Probabilities

2.1 The Theory of Fuzzy Probabilities

Since the invention of fuzzy sets by Zadeh® it often
has been proposed to use fuzzy set theory to express
probabilities. Zadeh himself worked upon this®, the
work we refer to is [Buckley 2003]. In Buckley’s
framework every singleton has a fuzzy probability
which is, in contrast to the fuzzy measure theory’, a
fuzzy number. The reason to use fuzzy probabilities
instead of classical is that in most applications you
do not exactly know the objective probabilities and
that you furthermore are not able to compute unique
prior subjective probabilities. Instead you only know
approximate quantities or linguistic estimations for
your probabilities like: this is improbable or that
is most probable. Rommelfanger states that ”the

3see [Walley 1991]
4see [Buckley 2003]
5see [Zadeh 1965]
6see [Zadeh 1984]
“cf. [Zadeh 1978]



case that extensive information about the entry of
the states of nature may not be available has [...]
to be considered”® and for that he proposes to use
fuzzy probabilities. In these cases fuzzy set theory
is suitable to express the ambiguity concerning the
probabilities. Certainly, an introduction in fuzzy
theory would go beyond the scope of this paper so

that only a few definitions are given?.

Let X be a set with elements = and let uz be
a membership function with

Then a set of pairs

A = {(@; pz(@))|x € X}

is called fuzzy set.

A fuzzy set is called a fuzzy number if its mem-
bership function increases monotonously to a single
culmination in which the membership function takes
on the value 1 and then decreases monotonously.

Let A be a fuzzy set. Then the (classical) set
A, = {z € X|uz(z) > a}

is called the a-cut of A.

Clearly, the a-cuts of a fuzzy number are intervals.
Fuzzy numbers are overlined so that they can be
distinguished from quantities of the classical set
theory.

To overcome the problem of assigning a distri-
bution to a random variable with incomplete
knowledge the probabilities in this chapter are given
as fuzzy numbers so that the partial ignorance
can be modeled. For instance, if you know that
the probability for an event is about 0.2, then you
will certainly assign the culmination of the fuzzy
probability to 0.2 and you will chose the limits of the
a-cuts according to the degree of your knowledge.

You may ask what more has to be said about
fuzzy probabilities than that you use fuzzy set theory
for probabilities. The point is that the extended
arithmetic operations proposed by Zadeh!'® cannot be
used with probabilities because the sum of discrete
probabilities can never exceed 1. Hence, fuzzy
probabilities have to be calculated in another way.

For the framework of decision making with fuzzy

8see [Rommelfanger 1999]

9Further readings to fuzzy set theory are [Kruse 1993],
[Zadeh 1965] and [Klir 1988].
10[Zadeh 1965]

probabilities we need not much more then the concept
of fuzzy numbers and a-cuts as determined. The
fuzzy probability function that is the basis of the
fuzzy probability theory is defined as follows.

Definition 1: Let X = {x1,---,z,} be a discrete
random variable. Then the function

ﬁ(X = Qfl) = Zz with
pz, (p) = 0 for all p ¢ [0, 1] and S A =1

that assigns to every realization a fuzzy number that
stands for its probability is called fuzzy probability
function.

The last condition - >.;; A4;17 = 1 - will guar-
antee that the culminations of the fuzzy probabilities
- these are the single points at which the membership
function takes on the value 1 - will sum to 1 so that
the probability function can be analysed for every «.
The fuzzy probability function avoids sure loss in the
sense of [Walley 1991] and is going to enable us to
calculate fuzzy expected utilities which is presented
next.

2.2 Decision Making with Fuzzy
Probabilities

In the following A stands for the set of possible acts
A={ay,as, - ,an}t and @ = {01,6,,---,0,} for the
possible states of nature. The set of natural numbers
from 1 to n is denoted by IN,,. The utility function
w is given by u : A x ® — IR. The decision maker
prefers high u-values so that it is possible to bring
all the pairs of {a,0} in an order of preference. This
is just like in the classical decision theory as in von
Neumann/Morgenstern!!. To adopt the techniques
used in classical decision theory we have to calculate
an expected utility for every act. After this we
have to bring the measured expected utilities in an
order so that the highest ranked act can be chosen.
Both can certainly easier be done with non-fuzzy
(crisp) probabilities. Then you have to weigh the
utilities with the probabilities and the act with the
highest expected utility has to be chosen. With fuzzy
probabilities you have to consider first how a fuzzy
expected utility can be computed and second how
fuzzy expected utilities can be brought in an order.
Both aspects will be dealt with in this chapter.

As has been mentioned above, it is not correct
to use extended arithmetic operations on fuzzy
probabilities. So we have to chose an indirect way
by calculating intervals for every a-cut of the fuzzy
expected utility.

Hgee [Neumann 1944]



Definition 2: Let A be a set of acts, ©® a set of
states of nature, u a utility function and P a fuzzy
probability function for ©. Then for every a with
0<a<l:

Eaola;) =["Ea(a:); YEa(ay)] =

|' n
inf ij u(a;, ¢ j ); sup ij
1

az: -|
If)GPa j= pEP, j=1 J
with p € P, means that p; € P,(6;) for all j € IN,,
is called the a-cut of the expected fuzzy wtility.
LE,(a;) is termed as the lower a expected utility and
UE.(a;) as the upper a expected utility. The fuzzy
number that consists of the a-cuts E(a;) (a € [0,1])
is called fuzzy expected utility and written E(a;).

The fuzzy expected utility is well defined since
there are no mathematical subtleties like open sets
of action. The algorithm to calculate these a-cuts is
provided by Dubois/Prade!? and has been simplified
by Rommelfanger in [Rommelfanger 1999]. It is
presented in the following theorem.

Theorem 3 TFor every a € [0,1] the a-cut of
the fuzzy expected utility of an act a; E,(a;) can be
computed by the following algorithm - the normal
text points out what has to be done to calculate the
lower bound YF,(a;) and in brackets what for the
upper bound YE,(a;).

1. Reindex the states of nature so that for the given
a; u(a;,0;) is ordered: u(a;,61) < u(a;,b2) < --- <
u(a;,0m)3.

2. Specify for all probabilities the smallest value:
p; = inf P(;) Vj € IN,,.

3. Increase p; (p,) as high as possible so that the
condition Z _1 pj < 1is still satisfied.

4. 1If the 1nequahty is fulfilled in the strong sense
then continue with the increasement of py (pn—1) in
the same way.

5. Repeat this procedure with the next (previous)
index as long as the inequality is not fulfilled as
equation.

6. Use the calculated probability to compute the
lower (upper) « expected utility in the classical way.

After the fuzzy expected utilities have been cal-
culated for every act you have to bring the computed
fuzzy numbers in an order. Certainly, this is not as
easy as ordering crisp numbers. Several approaches
to do this have been proposed. The first one to be
presented here is according to [Buckley 2003]. The

2see [Dubois 1979]
13For reasons of simplicity we dispense with a probably math-
ematically more correct new identifier for the new index.

ordering works with a threshold function.

Definition 4: Let E(a;) and FE(a;,) be fuzzy

expected utilities of two acts (a;,) and (a;,). Then
the threshold function v : A x A — [0,1] which
measures how much E(a;,) is higher than E(a;,) is

defined as follows:

v(E(ai,), E(as,)) =

max{min{,uf(ail ) (p1), HE(a;,) (p2)|p1 < p2}}-

For given threshold n we define E(a;,) < E(ay,)
if v(E(ai,), E(ai,)) = 1 and V(E(%) Ea.,) <
and E(a;,) :~ E(a;,) if neither E(a;,) :< E(am) nor
E(a;,) < E(ai,).

Suppose i.e. that n = 1. Then the ordering of
the fuzzy numbers only depends on the culminations
and the two fuzzy expected utilities are only in
that case equal iff the culminations are at the same
position. For n < 1 the points of intersection of the
membership functions have significance'*

A second option to order the fuzzy expectations
is to shrink the fuzzy number to one representing
crisp number. Two alternative ways to do that are
to be shown here.

The first way to represent fuzzy numbers with crisp
numbers is to calculate the centroid. The centroid is
sort of a barycentre of a fuzzy number.

Definition 5: The centroid of a fuzzy expected
utility is given by

c(E(a;,)) =
i f e a11)< )

A fuzzy expected utility E_(ail) is then less

than another fuzzy number E(a;,) regarding the

centroidal order, written F(a;,) <. E(a;,), if

c(E(ai,)) < c(E(as,)).

The second way is more discrete and works with the
lower and upper bound of an a-cut for given a.

Definition 6: Let E(a;) and E(a;,) be fuzzy
expected utilities of two acts (a;,) and (a;,). A fuzzy
expected utility F(a;, ) is then less than another fuzzy
number E(a;,) regarding the Mina respectively Maza
order if min{FE(a;,)s} < min{FE(a;,)} respectively
max{E(a;,)a} < max{E(a;,)aq}

Although definition 4 looks a bit unpleasant its

Mgee [Buckley 2003], p.22



concept is quite easy and intuitive. It is compu-
tationally less demanding than the calculating of
centroids and has the additional merit that a higher
degree of fuzziness coincides with a higher degree
of indecision'®. This characteristic maintains the
fuzziness of the information about the probabilities
in the decisional process which gives it sort of a
philosophical justification. On the other hand there
are only few situations where indecision is desirable
so that definitions 5 and 6 are prefered then. Def-
inition 5 has despite its complexity the advantage
that the decision is not only made at one single
a-cut but the hole membership function is used for
calculation. Definition 6 is a simple rule that can be
used if definition 4 leads to indecision. This method
is also suggested in [Rommelfanger 1999]. It has to
be mentioned that you can mix the orders, in which
the fuzzy numbers are represented by crisp numbers,
by weighing its representatives.

We have shown an algorithm to compute fuzzy
expected utilities from fuzzy probabilities and some
ways to bring the calculated fuzzy numbers in an
order so that a preference can be scaled. We are
going to cope with the data-based decision now.

As in clasical statistical decision theory the prior
fuzzy probability will be converted into a posterior
fuzzy probability. After that the posterior fuzzy
expected utility will be computed by using this
posterior knowledge and an order will be used
accordingly. So the only thing that has to be shown
is how the conversion works. In classical decision
theory the Bayes-theorem is applied. This theorem
has to be adopted for the fuzzy case. Again the
Bayes theorem cannot directly brought into the fuzzy
world by using extended arithmetic operations but
the a-cuts have to be computed. We assume that
there is given an additional random variable Z that
contains information about the true state of nature.
We define the set of strategies S as the product of
the set of acts and Z : S := A ® Z like in statistical
decision theory. This extension to the set of acts has
to be done because the decision depends now on the
realization of Z.

Definition 7. Given a set of strategies S, a set
of states of nature @, a € [0,1], a fuzzy probability
function P for © and a random variable Z with
the conditional distribution f : Z x ® — IR with
f = f(2]6). Then the fuzzy probability function

7(0il2)a =

I5Tndecision is generated in this context whenever two acts
are & in definition 4 or have the same value c respective Mina
or Maza in definition 5 and 6.

ALIL ‘ n o
{ = _, f(z195) |P€P( z)aazj_lpj_l}

is called posterior fuzzy probability.

The definition 7 is the Bayes rule for fuzzy probabil-
ities and works precisely like the generalized Bayes
rule by Walley'® applied on the a-cuts of the natural
extension'” of the prior fuzzy probability.

Definition 7 has been extended for the case that also
f(2]0) is a fuzzy probability function. For further
readings see [Buckley 2003] or [Lossin 2004].

With the posterior fuzzy probability we are able
to calculate a fuzzy expected utility by using the
Dubois/Prade-algorithm (theorem 3) and afterwards
these fuzzy utilities can be brought in an order of
preference with one of the proposed methods.

3 Decision Theory with Imprecise
Probabilities

3.1 The Theory of Imprecise Probabilities

The idea of imprecise probabilities was mentioned
first by Boole'® and has been developed especially by
Walley'?. The basis of this chapter are [Kofler 1976]
and [Ehemann 1981]. Their theory of linear partial
information has only been discussed in the German-
speaking part and bears analogy to [Walley 1991].
Recent research is among others from Augustin?’

The classical statistical decision theory distin-
guishes between complete ignorance and risk.
Complete ignorance in this case means that the
decision maker has no idea about the probabilities
that determine the state of nature to arise. The
word risk in this context stands for the situation
when a decision maker knows exactly the probability
density function for ©. The assumption that in every
decision situation one of these two cases - complete
ignorance or risk - takes place is highly critical®!.

decision situations you usually have an idea about
the probability density function for ©, but you don’t
know it exactly. The assumption with imprecise
probabilities is that you can restrict the pdf?2-space
that contains every possible probability function to

see [Walley 1991]
“see [Walley 1991]

18see [Boole 1854], chapter 16-21
9see [Walley 1991]

20see [Augustin 2002] and [Augustin 2004]

21 Many economic researchers even go a step further and ar-
gue that you can always construct a subjective probability den-
sity function so that you always decide under risk. But this can
not only lead to wrong decisions but also has the disadvantage
that you lose probably important information about the degree
of ignorance.

22pdf=probability density function



a subset with the shape of a convex polyhedron.
Considering this, the following definitions are easy to
understand.

Definition 8 Let p with p = (p1,p2,- - ,pPn)
and Z?zl p; = 1 be a probability vector. The set Vj,,
with

Vo= {(pp2, - pa)lpy 2 095 € Ny, D o py = 13

i=1

that contains every possible probability density
function of ©® with |@| = n is called probability
simplez.

Definition 9: A set M,, with M,, C V,,, M,, # 0 and
| M, | > 1 is called partial information.

|M,| > 1 ensures that the set M, contains more
than one probability density function as it is the
case with risk. M, is a real subset of V,, so that
the decision maker does not decide under complete
ignorance. Partial information as defined is not
necessarily a convex polyhedron. But it is sensible to
focus on convex polyhedrons as partial information
because in practice it is realistic that a finite set
of information is given. From the algebraic point
of view convex polyhedrons are expressed by lin-
ear relations. This leads us to the following definition.

Definition 10 Let M) be a partial informa-
tion. If there is a matrix A and a vector b with
My ={p|A-p < b}, then M} is called a linear partial
information (LPI).

The inequality A - p < b in definition 10 leads
to a convex structure of the LPI. This means that for
every # € © you can calculate a lower and an upper
probability so that the real probability is between
the two of them.

Definition 11: For given M, we define: [1(0;) =
min{p;|3p : p; = pjAp € My} as the lower probability
of event j and u(0;) = max{p;|Ip : p; = pjAp € M,}
as the upper probability of event j.

Definition 12: Lets consider a special case of
LPI in which the upper and the lower probability
of every state of nature does not depend directly
on the probability of the other states of natures so
that the relations of A - p < b can be divided to
0 <1i(8;) < p(f;) <u(d;) <1Vj € IN,. This kind of
LPI is called autonomous linear partial information
or probability intervals.

Probability intervals have been analysed in [Campos

1994]. For further calculation the extreme-points-
matrix is needed. This is a matrix in which vertex
distributions of a linear partial information are given.

Definition 13: Let M be an LPI. Then the ma-
trix EX (M) that contains in its columns the vertex
distributions of M is called extreme-points-matrix.

Erample 14: Let Mz be an autonomous LPI
with 0.4 < p(61) < 0.65, 0.2 < p(#2) < 04, and
0.1 < p(#3) < 0.2. Then:

0.65 065 06 0.5 04

EX(M)=] 025 02 02 04 04

0.1 015 02 0.1 0.2

You can extend the theory of imprecise probabilities
to events which are not singletons and realize that
there is no additivity for imprecise probabilities as
with usual probabilities. This aspect is interesting
but goes beyond the scope of this paper??.

3.2 Decision Making with Imprecise
Probabilities

In this section, criteria for data-free and data-based
decisions on the basis of a linear partial information
about the state of nature are derived. Considering
the data-free decision, there is given the set of
acts A, the set of states of nature O, the utility
function u and the linear partial information M.
In classical decision theory you now calculate the
expected utility for every act a; € A using the given
probability to weigh the resulting utilities. With
imprecise probabilities this is not possible because
you do not have a unique prior distribution but a set
of vertex prior distributions. Clearly, with interval
probabilities the resulting expected utility is not a
number but an interval. It has to be calculated a
lower and an upper bound for this interval.

Definition 15: Let A be a set of acts, © a set
of states of nature, u a utility function and M a
linear partial information for ©. Then

En(a;) == "Eum(a;), YEnl(a;)] ==

min i1 pj - ulag, b;), max i1 P - ulaq, ;)
is the (interval-valued) expected wutility of a;.
LEy(a;) and Y Ey(a;) are called lower and upper
expected utility respectively.

23For further information regarding this aspect see [Walley
1991).



Ep(a;) is well defined and the calculation of
this interval can easily be done with the following
theorem that works for linear partial informations. If
the linear partial information is autonomous then it
is even possible to use the Dubois-Prade-algorithm
(theorem 3). You simply interpret the interval
probabilities as a-cuts by setting inf P(6;) = 1(6;)
and sup P(6;) = u(d;) and get the interval-valued
expectation of the utility. This is methodically the
bridge between decision making with fuzzy and
with imprecise probabilities. The a-cuts of the fuzzy
probabilities of a state of nature are nothing else than
a monotone decreasing set-function of probability
intervals. Now consider the decision making with
non-autonomous linear partial information.

Theorem 161 Let [ “Ewn(a;), YEm(a;)] be an
expected utility for an act a; and M the linear partial
information for ©. We define u,,; as a row-array with
the utility of the act ¢ for every state of nature as its
components. Let 1; be an array with the dimension
n that consists of zeroes but its j-th component is
one. Then for all ¢ € IN,,:

[ "En(ai), YEwm(as)]

= [min {1 o, - EX(M)}, mae{L; - g, - EX (M)},

JEIN,

In practice you calculate u,, - EX(M) and the
minimum and the maximum of this array define the
interval-valued expectation.

After we calculated interval-valued expectation
with imprecise probabilities we now have to derive
criterions for chosing an optimal act. Analogous
to the fuzzy decision theory we have to bring the
interval-valued expectations in an order so that a
preference order for A can be developed. A criterion
that is similar to the mina-criterion (definition 6) is
the maxEmin according to [Kofler 1976].

Definition 17: An act a; is called optimal with
respect to the mazEmin-criterion if it maximizes
o(a;) = YEp(a;) for all i € IN,,.

This criterion is pessimistic because it estimates
an act under the assertion that the worst distribution
is the true one. Nevertheless it is widely used in
scientific literature as it corresponds to the Gamma-
Minimax criterion?*, the Maxmin expected utility2®
and the Choquet expected utility2®. Of course there
are other options to bring intervals in an order to

24see [Berger 1984]
255ee [Gilboa 1989]
265ee [Schmeidler 1989]

derive optimal acts. An important class of criterions
bases upon weighted averages.

Definition 18: An act a; is called optimal with
respect to the n-criterion if it maximizes for given
n € [0,1] p(a;) =n- “Eyla;) + (1 —n) YEn(a;)
for all i € IN,,,>7.

It is easy to see that the n-criterion with n = 1
brings the maxFEmin-criterion. For ambiguity-averse
agents the parameter n, that has been called caution
by [Weichselberger 2001], should be greater than 0.5
so that T Ej;(a;) is higher weighted then YEj;(a;).
An n greater than 0.5 and less or equal than 1 also
solves the Ellsberg-paradox?®. The n-criterion is
obviously related to the Hurwicz-criterion in classical
decision theory. In imprecise probability theory there
are some other interesting concepts that have the
disadvantage that they can lead to indecision. Never-
theless they should be mentioned here because they
also can be used to preselect the acts that should be
taken into account when using the maxFEmin or the
n-criterion. E-admissibility?® is one of those concepts.
An act is E-admissible if there is a p € M so that
the act has the highest expected utility. Another
concept is the maximality by Walley° that bases on
pairwise comparings of acts. A sophisticated review
to decision rules is [Troffaes 2004]. This should be
enough to understand how no-data problems with
linear partial information can be solved.

Now the data-based decision has to be consid-
ered. We have to cope with the aspect how to
transform prior knowledge into posterior knowledge
with imprecise probabilities. As you will see, this
works analogously to fuzzy probabilities.

Definition 19: Given a set of strategies S, a set
of states of nature ©, a linear partial information
M for © and a random variable Z whose realization
contains information about the true state of nature
and a conditional distribution f : Z x ©® — IR with
f = f(z|6). Then the interval-valued probability
function

P(6;]2) ==
: f(210:)-pi . f(210:)-ps
L?élﬁ { S I (:105) 95 } ' pent { G105 ps H

27cf. [Weichselberger 2001], ch. 2.6

28For further information about the Ellsberg-paradox see
[Ellsberg 1961], that the Ellsberg-paradox can be solved by the
n-criterion with 0.5 < n < 1 was mentioned by [Lossin 2004],
p. 63.

29see [Good 1952] and [Levi 1983]

30[Walley 1991]




is called (interval-valued) posterior probability func-
tion>!.

After the interval-valued posterior probability
function is calculated, the expected utility can be
computed by using theorem 16 and the maxFmin- or
the n-criterion can be used accordingly. The calcula-
tion is precisely done by using the generalized Bayes
rule by [Walley 1991]. This updating mechanism has
been criticized by Augustin®Z, recently Seidenfeld?3
argued against it when he compared E-admissibility
and maxFEmin.

4 Comparison of the Frameworks to
Classical Decision Theory and
Conclusions

Two frameworks have been given to overcome the
informational problems with probabilities. It has
been shown that there are several similarities be-
tween them regarding the mathematical techniques
and that autonomous linear partial informations
are related to fuzzy probabilities. This has been
already mentioned by [Rommelfanger 1999] but he
was wrong when he asserted that ”this model with
linear partial information (LPI)3* can be interpreted
as the special case where all [fuzzy probabilities] have
constant membership functions”. This is not true
because with fuzzy probabilities it is not possible -
in the given framework - to model relations between
probabilities as with LPI even for singletons. Hence,
there is still some space for a model that merges these
two concepts. For example, every a-cut could be a
coherent imprecise probability measure®®. [Cooman
2002] contains such a model in terms of possibility
measures.

To compare these frameworks with the classical
decision theory means to explain what the additional
performance of these frameworks is. As has been
shown above, the imprecise probabilities allow for
relations between probabilities so that the given
information for these relations can be used precisely.
With fuzzy probabilities these relations can not be
modeled but the given framework has the advantage
relating to LPI that the culmination as the most
probable value of the probability can be taken into
account. This can be of great relevance if an informa-
tion about the probabilities like ”the probability for

31 A generalization of this definition for the case that also the
conditional distribution for Z is imprecise and given by M} is
provided in [Lossin 2004].

32[Augustin 2003]

33[Seidenfeld 2004]

34Meant by this is the model of [Kofler 1976].

35coherence: see [Walley 1991]

6; is about 0.1” is given. With imprecise probabilities
this information can not be used in an obvius way.
These are the differences between the two frameworks
but what about classical theory? We think that
using subjective probabilities is highly controversial
because an important information, namely the
degree of knowledge, gets lost by computing them.
Somebody who is not as good informed as another
one has a higher risk to make wrong decisions. This
has to be taken into account by making decisions
because - not only due to Ellsberg - you have to
consider that economic agents are most probably risk
averse concerning making right or wrong decisions.
But this underlying risk can only be measured in one
of the given frameworks and not in classical decision
theory.
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