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Abstract

A consistent concept of logical probability affords the
employment of interval probability. Such a concept
which attributes probability to arguments consisting
of premise and conclusion, can be used to generate a
system of axioms for statistical inference.
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1 Introduction

Traditionally the two most important of the funda-
mental problems in statistics are the question about
the nature of probability and an appropriate theory
of statistical inference. The close connection between
both problems is evident: The subjectivist — or the
objective Bayesian — accepts the idea of ever avail-
able knowledge providing prior probability, and relies
on Bayes’ theorem in order to learn from experience.
If, however, the concept of trustworthy prior probabil-
ity is not accepted, statistical inference is restricted to
methods, which do not exhaust the total information
contained in a given sample.

A logical concept of probability several times in his-
tory was seen as a possible solution of both problems,
but never a comprehensive mathematical treatment
of probability as a two-place function succeeded. The
reason is obvious: If probability consistently is seen
as a function of arguments, the dependence upon the
premise and the dependence upon the conclusion have
to be described. In classical probability theory, how-
ever, no tool can be found allowing for an addition
formula with respect to unions of premises.

The situation becomes different, if the theory of in-
terval probability can be relied on: In this theory the
concept of F-probability plays a central role, and the
union of F-probability-fields on a measurable space al-
ways constitutes an F-probability-field on this space.

Therefore by means of the theory of interval probabil-
ity a consistent logical concept of probability can be
created (see also [3]). Since this concept is purely epis-
temic, it is acceptable from the subjectivistic view on
probability as well as from the objectivistic one. Ac-
cording to this concept every probability statement is
related to an argument, consisting of a premise and
of a conclusion; probabilities of events — if existing
at all — are not subject of the theory.

The radical switch from probability as a one-place-
function to probability as a two-place-function pro-
duces many insights. It might be regarded the most
important gain, that statistical inference can be con-
ceived as an integral branch of probability theory —
without engaging any prior probability. Based on fun-
damental ideas of statistical reasoning — which are to
be found in the concepts of significance and confidence
— a duality of logical probability-fields can be estab-
lished by axiomatic method, allowing for probability
statements of statistical inference in clearly defined
situations. Since a frequency interpretation of all log-
ical probability statements is available, the conceptual
quality is the same for primal and for dual probability-
fields.

While the fundamental ideas of the resulting Sym-
metric Theory — together with a few prominent ex-
amples of application — are represented in this arti-
cle, the main task of developing the methodology and
exhibiting its boundaries remains to be done. Fur-
thermore the paper does not contain the necessary
comparison of the Symmetric Theory with preced-
ing logical theories of probability from J.M. Keynes
to H. Kyburg and I. Levi. It will also be fruitful to
review Bayesian and Non-Bayesian approaches of sta-
tistical inference (e.g. R.A. Fisher’s Fiducial Probabil-
ity, D.A.S. Fraser’s Structural Inference and A. Birn-
baum’s Likelihood Theory) from the position of the
Symmetric Theory. So far the present paper remains
preliminary and should be understood as an appeal
for cooperation.



The description of the theory of interval probability
in Section 2 is reduced to a minimum in order to avoid
unnecessary repetitions. The introduction of the log-
ical concept of probability in Section 3 concentrates
on the mathematical aspects of the construction of W-
fields containing all information which is the basic pre-
requisite for application of this concept. Section 4 de-
scribes the axiomatics of S-models producing duality
of W-fields and characterizes the three quality-levels
of duality. Some examples of application demonstrate
in Section 5 statistical inference for constellations to
be found in classical statistics. Section 6 gives an out-
look to further results allowing the employment of the
theory in more general situations.

2 The Theory of Interval Probability

This theory [2] is based on Kolmogorov’s system of
axioms. Let (Ω; A) be a measure-space, then p(.) is
nominated K-function, if it obeys the Kolmogorov-
axioms.

The concept of interval probability is introduced in
two steps. R-probability P (A) on (Ω; A) is given if
additionally to Kolmogorov’s axioms T IV and T V
hold.

T IV: P (A) = [L(A); U(A)] ⊆ [0; 1]

T V: The set M of K-functions p(.) on (Ω; A) with
L(A) ≤ p(A) ≤ U(A), ∀A ∈ A, is not empty.

M is nominated the structure of the R-probability-
field R.

The higher quality of interval probability is named
F-probability and is given iff additionally

T VI: inf
p(.)∈M

p(A) = L(A) and sup
p(.)∈M

p(A) = U(A),

∀A ∈ A,

is valid.

A consequence of T VI is:

U(A) = 1− L(¬A), ∀A ∈ A.

In the case of an F-probability-field F = (Ω; A; L(.))
the structure is sufficient to describe all interval-
limits. Any subset of the structure M which is suffi-
cient to describe M and therefore the interval-limits
of F-probability, is called a prestructure of the F-field.

Two partitions C1 and C2 of the sample space Ω of an
F-probability-field are mutually independent, if a sub-
set of the structure consisting of K-functions which

are independent on C1 and C2, serves as prestructure.
This definition allows the concept of an independent
identically distributed (i.i.d.) sample, for which it can
be proved: In a very large sample it is practically
sure that the relative frequency of an event A with
P (A) = [L(A); U(A)] lies between L(A) and U(A).
The model employed contains, however, no informa-
tion about the behaviour of the relative frequency
inside [L(A); U(A)]. This result allows a frequency-
interpretation of interval probability.

In this theory some algebraic operations with
probability-fields are possible, e.g. the union of F-
probability-fields with identical (Ω; A): Let Fi =
(Ω; A; Li(.)), i ∈ I, F0 = (Ω; A; L0(.)), then F0 =⋃

i∈I Fi ⇔ L0(A) = infi∈I Li(A), ∀A ∈ A. F0 is
an F-probability-field with prestructure

⋃
i∈I M(Fi).

3 The Logical Concept of Probability

As it is understood here, this concept attaches com-
ponents of probability exclusively to arguments, un-
derstood as pairs (A||B) of propositions: the premise
B and the conclusion A.

Therefore it never produces probability statements
about propositions or events! All evidence concerning
the conclusion A is relative to information contained
in the premise B.

So far this concept is clearly distinct from any objec-
tivistic approach.

On the other hand it contains no personalistic ele-
ment and allows nothing which could be interpreted
as “belief”. Consequently it is clearly distinct from
any subjectivistic approach.

The mathematical model employed by this concept is
that of interval probability, especially the theory of
F-probability-fields.

Definition 1 Let (ΩA; A) and (ΩB ; B) be two mea-
surable spaces with {x} ∈ A, ∀ x ∈ ΩA,
{y} ∈ B, ∀ y ∈ ΩB. Then a W-field W =
(ΩA; A; ΩB ; B; L(.||.)) is created, iff the following ax-
ioms are valid:

L I: To every B ∈ B+ := B \ {∅} an F-probability-
field F(B) = (ΩA; A; L(.||B)) is attached.

L II: Let I 6= ∅ a set of indices, B0 ∈ B+,
Bi ∈ B+, i ∈ I, with B0 =

⋃
i∈I Bi. Then

F(B0) =
⋃

i∈I F(Bi) holds.

L III: Let
ΩA = Ω(1)

A × Ω(2)
A , ΩB = Ω(1)

B × Ω(2)
B ,

A(r) ⊆ Pot(Ω(r)
A ), B(r) ⊆ Pot(Ω(r)

B ),



r = 1, 2, A(r), B(r) σ-fields, r = 1, 2;

{A(1)×A(2)|A(r) ∈ A(r), r = 1, 2} is a generating
set of A;

{B(1)×B(2)|B(r) ∈ B(r), r = 1, 2} is a generating
set of B.

Whenever

L(A(1) × Ω(2)
A ||B(1) ×B(2))

= L(A(1) × Ω(2)
A ||B(1) × Ω(2)

B ),

L(Ω(1)
A ×A(2)||B(1) ×B(2))

= L(Ω(1)
A ×A(2)||Ω(1)

B ×B(2)),

∀A(1) ∈ A(1), ∀A(2) ∈ A(2), ∀B(1) ∈ B(1),
∀B(2) ∈ B(2),

then

L(A(1) ×A(2)||B(1) ×B(2))

=L(A(1)×Ω(2)
A ||B(1)×Ω(2)

B )·L(Ω(1)
A ×A(2)||Ω(1)

B ×B(2))

∀A(1) ∈ A(1), ∀A(2) ∈ A(2), ∀B(1) ∈ B(1),
∀B(2) ∈ B(2),

holds. ¤

The elements of A and of B+ are understood as repre-
senting propositions. A pair (A||B), A ∈ A, B ∈ B, is
interpreted as an argument with premise B and con-
clusion A. The probability P (A) in the F-field F(B)
is interpreted as probability of the argument (A||B)
and designated by P (A||B).

Axiom L I states that in evaluating arguments the
higher quality-level of interval probability (defined
in axiom T VI) has to be employed. Axiom L II
describes the method to calculate P (A||B1 or B2),
if P (A||B1) and P (A||B2) are known. This axiom
clearly distinguishes the concept from all types of
Bayesian approach. Axiom L III is formulated for a
W-field W with two projection-fields W(1) and W(2)

but by induction it can be generalized to any finite
number of projection-fields W(i), i = 1, ..., n, if the
premise in each W(i) is relevant only for the conclu-
sion in the same W(i) but totally irrelevant for all
other conclusions. Thus strong independence of argu-
ments is characterized. Due to Axiom L III such a
situation produces mutual independent F-fields, and
consequently allows for a frequency-interpretation of
the logical concept:

If a large number of strongly independent arguments
are evaluated by P (Ai||Bi) = [L; U ], i = 1, ..., n À 1,

this is equivalent to: P (AT ||BT ) = [1− ε; 1], where

AT =
⋃

L−δ≤ |I|n ≤U+δ


⋂

i∈I

Ai ∩
⋂

j∈¬I

(¬Aj)


 ,

BT =
n⋂

i=1

Bi;

I ⊆ {1, 2, ..., n}, ε ¿ 1, δ ¿ 1.

This result can be interpreted as follows: From total
evidence BT , created by all Bi, with probability very
close to 1 the proposition AT may be concluded, stat-
ing that the proportion of true propositions in the
set {Ai|i = 1, ..., n} lies between L − δ and U + δ,
where δ is very small. If an argument (A||B) with
P (A||B) = [L; U ] is conceived as one out of an infi-
nite set of mutually strongly independent arguments
with P (Ai||Bi) = [L; U ], where all premises Bi are
true, it is understood from L III, that the proportion
of true conclusions Ai in this set lies between L and
U .

Four definitions are important in employing this con-
cept for statistical reasoning.

1. In the W-field W = (ΩA; A; ΩB ; B; L(.||.)) the
set Y(I) = {(Ai||Bi)|i ∈ I} is nominated a W-
support of W if all L(.||.) of W can be calcu-
lated, provided that Li and Ui out of P (Ai||Bi) =
[Li; Ui], ∀i ∈ I, are known. ¤

2. In the W-field W = (ΩA; A; ΩB ; B; L(.||.))
the conclusions A1 and A2 are designated
mutually probabilistic equivalent, A1 .∼A2,
if P (A1||B) = P (A2||B), ∀B ∈ B+;
the premises B1 and B2 are designated
mutually probabilistic equivalent, B1 .∼B2, if
P (A||B1) = P (A||B2), ∀A ∈ A. ¤

3. For A0 ⊆ A, B0 ⊆ B let (A0||B0) :=
{(A||B)|(A, B) ∈ A0 × B0}. The W-support
Y = (YA||YB) ∪ (YA||YB) of W is regular W-
support of W iff

(a) YA, YA ⊆ A′ := A \ {∅, ΩA}, YA ∩ YA = ∅
YB , YB ⊆ B′ := B \ {∅, ΩB}, YB ∩ YB = ∅

(b) ∀A ∈ YA ∃A ∈ YA : A .∼¬A,
∀B ∈ YB ∃B ∈ YB : B .∼¬B,

(c) ∀A ∈ YA ∃A ∈ YA : A .∼¬A,
∀B ∈ YB ∃B ∈ YB : B .∼¬B. ¤

4. If in the W-field W = (ΩA; A; ΩB ; B; L(.||.))
to every y ∈ ΩB a K-function p(.||y) is corre-
sponding — instead of a general F-field F({y}) =
(ΩA; A; L(.||{y})) — W is nominated a classical
W-field. ¤



Example 1α

a) W = (ΩA; A; ΩB ; B; L(.||.)) with

ΩA = R1, A = Bor(ΩA)
ΩB = R1, B = Bor(ΩB)

L(A||B) = inf
y∈B

∫

A

1√
2π

e−
1
2 (t−y)2dt

implying

U(A||B) = sup
y∈B

∫

A

1√
2π

e−
1
2 (t−y)2dt

is a classical W-field, since for every y ∈ ΩB ,
p(A||y) =

∫
A

1√
2π

e−
1
2 (t−y)2dt describes a classical

probability field (ΩA; A; p(.||y)).

b) Y0 = {(] − ∞; x]||y)| x ∈ ΩA, y ∈ ΩB} is
a W-support of W, since p(] − ∞; x]||y) =∫ x

−∞
1√
2π

e−
1
2 (t−y)2dt is sufficient information to

describe W.

c) ] − ∞; x] and ] − ∞; x[ are probabilistic equiva-
lent since F (x; y) =

∫ x

−∞
1√
2π

e−
1
2 (t−y)2dt is ev-

erywhere continuous in x.

]−∞; y] and ]−∞; y[ are probabilistic equivalent
since F (x; y) is everywhere continuous in y.

d) While Y0 is not a regular support of W, Y1 =
(YA||YB) ∪ (YA||YB) with

YA = {]−∞; x]|x ∈ ΩA}
YA = {[x; +∞[|x ∈ ΩA}
YB = {[y; +∞[| y ∈ ΩB}
YB = {]−∞; y]| y ∈ ΩB}

is a regular support of W.

e) W∗ = (ΩA; A; ΩB ; B; L∗(.||.)) with

ΩA = R1, A = Bor(ΩA)
ΩB = R1, B = Bor(ΩB)

L∗(A||B) = inf
y∈B

1≤σ≤2

∫

A

1
σ
√

2π
e−

1
2σ2 (t−y)2dy

is a W-field, but not a classical one. ¤

4 The Symmetric Theory of
Probability

Definition 2 Let W = (ΩA; A; ΩB ; B; L(.||.)) be a
W-field. An argument (A||B), (A, B) ∈ A′ × B′, is
concordant in W iff:

a) P (A||B) = [0; α]

b) P (¬A||¬B) = [0; 1− α],

(A||B) then is α-concordant in W, (¬A||¬B) is
(1− α)-concordant in W. ¤

The search for a set of concordant arguments in a
W-field is the key task in employing the Symmetric
Theory.

Example 1β In the case of W-field W according to
Example 1α

P (]−∞; x] || [y; +∞[) =
[
0;

∫ x

−∞

1√
2π

e−
1
2 (t−y)2dt

]

P (]x; +∞] || [−∞; y[) =
[
0;

∫ ∞

x

1√
2π

e−
1
2 (t−y)2dt

]

Therefore every (Ax||By), where Ax =] − ∞; x],
By = [y; +∞[, is a concordant argument with α =∫ x

−∞
1√
2π

e−
1
2 (t−y)2dt. ¤

Definition 3 LetW1 = (ΩA; A; ΩB ; B; L1(.||.)) and
W2 = (ΩB ; A; ΩA; B; L2(.||.)) be W-fields and N ⊆
A′×B′. Then S := (W1; N ; W2) is a model of Sym-
metric Probability or S-Model, iff Axiom S I is valid.

S I: a) N1 := {(A||B)|(A, B) ∈ N}
is a W-support of W1, and its elements are
concordant in W1.

b) N2 := {(B||A)|(A, B) ∈ N}
is a W-support of W2, and its elements are
concordant in W2.

c) ∀A, B ∈ N : P1(A||B) = P2(B||A).

N is designated the nomenclature of S, the W-fields
W1 and W2 are dual with respect to the nomenclature
N . ¤

Example 1γ In case of primal W-field W1 = W (Ex-
ample 1α) according to d) Y1 is a regular support of
W1.

The W-field W2 = (ΩB ; B; ΩA; A; L2(.||.)), where

L2(B||A) = inf
x∈A

∫

B

1√
2π

e−
1
2 (x−t)2dt

implies

U2(B||A) = sup
x∈A

∫

B

1√
2π

e−
1
2 (x−t)2dt,



together with W1 obeys to rule S Ic) for all (A, B) ∈
Y1:

P1(]−∞; x] || [y; +∞[) =
[
0;

∫ x−y

−∞

1√
2π

e−
τ2
2 dτ

]

=
[
0;

∫ +∞

y−x

1√
2π

e−
τ2
2 dτ

]

= P2([y; +∞[ || ]−∞; x]).

Since Y2 = (YB ||YA) ∪ (YB ||YA) is a regular support
of W2, N := (YA × YB) ∪ (YA × YB) represents the
nomenclature of the S-model (W1; N ; W2), and W1

and W2 are dual with respect to N . ¤
The relation between two dual fields characterizes sta-
tistical inference. Axiom S I may be understood as
adoption of basic concepts in classical non-Bayesian
inference: The ideas of confidence and significance are
easily recognizable, especially in S I c1. S-models ac-
cording to Definition 3 define the elementary level of
the methodology, where duality depends on the choice
of nomenclature. It is possible that for the same W-
field W1 with two different nomenclatures duality to
two different W-fields W2 is established.

Definition 4 Let S := (W1; N ; W2) be an S-model.
It is regular, iff Axiom S II holds:

S II: a) N = (NA ×NB) ∪ (NA ×NB).

b) N1 = (NA||NB) ∪ (NA||NB)
is a regular W-support of W1.

c) N2 = (NB ||NA) ∪ (NB ||NA)
is a regular W-support of W2.

In this case W1 and W2 are regularly dual with re-
spect to N . ¤

Theorem 1 Let S := (W1; N ; W2) be an S-model.
Then N defines a linear order on ΩA as well as a
linear order on ΩB, so that equivalence classes consist
of probabilistic equivalent elements only. ¤

Vice versa N and the regular duality of W1 and W2

are uniquely determined, if besides the W-fields W1

and W2 also linear orders on ΩA and ΩB are given (as
usual in one-dimensional classical probability, at least
if a one-parametric family of distributions is given):
Regular duality represents a higher quality-level of du-
ality.

Example 1δ The nomenclature N := (YA × YB) ∪
(YA×YB) employed in the S-model S = (W1; N ; W2)

1If for a one-sided test of significance the critical region A
and the hypothesis B are compared with conclusion A and
premise B of a concordant argument employed in the nomen-
clature of an S-model.

of Example 1γ obviously is in accordance with Axiom
S II: W1 and W2 are regularly dual with respect to
N . Due to Theorem 1 regular nomenclature N is
determined by the linear orders on ΩA and ΩB and
so is regular duality of W1 and W2. ¤
The highest quality-level of duality can be employed
if probability ratios are monotone.

Definition 5 Let W1 and W2 be classical W-fields,
S := (W1; N ; W2) be a regular S-model,

ZA : “x1 ≺ x2” and ZB : “y1 ≺ y2”

be the two linear orders defined by N on ΩA and ΩB.

Additionally let

[x1; x2] :={x∈ ΩA|x1 -x-x2}, ∀x1, x2∈ΩA : x1 -x2,

[y1; y2] :={y∈ ΩB |y1 -y-y2},∀y1, y2∈ΩB : y1 -y2.

Then S is a perfect S-model, if the following axiom
holds:

S III: a) Let xi ∈ ΩA, i = 1, 2, 3, 4:
x1 ≺ x2 ≺ x3 ≺ x4,
yi ∈ ΩB, i = 1, 2: y1 ≺ y2;
then:
p1([x1; x2]||y1) · p1([x3; x4]||y2)

≤ p1([x1; x2]||y2) · p1([x3; x4]||y1);

b) Let yi ∈ ΩB, i = 1, 2, 3, 4:
y1 ≺ y2 ≺ y3 ≺ y4,
xi ∈ ΩA, i = 1, 2: x1 ≺ x2;
then:
p2([y1; y2]||x1) · p2([y3; y4]||x2)

≤ p2([y1; y2]||x2) · p2([y3; y4]||x1).¤

Definition 6 If S = (W1; N ; W2) is a perfect S-
model, the W-fields W1 and W2 are mutually per-
fectly dual. ¤

If Axiom S III holds, then its validity is restricted to
the linear orders ZA and ZB , except for the simulta-
neous inversion of both orders, which in fact is only a
change of symbols.

Perfect duality, if it can be established, depends only
on the W-fields W1 and W2: the perfect dual W-field
W2 is the perfect answer to the request for statistical
inference if W1 is given. This applies to many prob-
lems which arise in statistical reasoning with models
employing classical probability.

Example 1ε In the case of the regular S-model
S = (W1; N ; W2) according to Example 1δ W1 as



well as W2 are classical W-fields defined by the Nor-
mal Law. Since this law is distinguished by mono-
tone density-ratios, the conditions of Axioms S III
are given. Therefore W1 and W2 are perfectly dual,
and this relation is unique: No other perfect S-model
with participation of one of the W-fields W1 or W2 is
possible. ¤

5 Some applications in classical
statistics

1) The L-constellation: A one-dimensional continu-
ous distribution function is given.

Let: −∞ ≤ xL < xU ≤ +∞,
−∞ ≤ yL < yU ≤ +∞,

and

0 ≤ F (x; y) ≤ 1, ∀x : xL < x < xU ,

∀y : yL < y < yU ,

F (x2; y) ≥ F (x1; y), ∀x1, x2 : xL <x1 <x2 <xU ,

∀y : yL < y < yU ,

F (x; y1) ≥ F (x; y2), ∀x : xL < x < xU ,

∀y1, y2 : yL <y1 <y2 <yU ,

lim
x→xU

F (x; y) = 1, ∀y : yL < y < yU ,

lim
x→xL

F (x; y) = 0, ∀y : yL < y < yU ,

lim
y→yU

F (x; y) = 0, ∀x : xL < x < xU ,

lim
y→yL

F (x; y) = 1, ∀x : xL < x < xU .

F (x; y) continuous in x and y, ∀x : xL < x < xU ,
∀y : yL < y < yU : describing a stochastically
ordered family of classical continuous probability
distributions with parameter y:

p1(X ≤ x||y) = F (x; y)

This constellation produces a W-field W1 =
(ΩA; A; ΩB ; B; L1(.||.)) with

ΩA = {x|xL < x < xU}, A = Bor(ΩA),
ΩB = {y|yL < y < yU}, B = Bor(ΩB),

L1(]xL; x]||{y}) = F (x; y).

A regular nomenclature is created by

Ax = ]xL; x], Ax = [x; xU [
By = [y; yU [, By = ]yL; y].

P1(Ax||By) = [0; F (x; y)],
∀x ∈ ΩA, ∀y ∈ ΩB ,

P1(Ax||By) = P1(¬Ax||¬By)
= [0; 1− F (x; y)],

∀x ∈ ΩA, ∀y ∈ ΩB .

NA = {Ax|x ∈ ΩA}, NA = {Ax|x ∈ ΩA},
NB = {By|y ∈ ΩB}, NB = {By|y ∈ ΩB},

N = (NA ×NB) ∪ (NA ∪NB).

The dual W-field W2 = (ΩB ; B; ΩA; A; L2(.||.))
is determined by P1(A||B) = P2(B||A),
∀(A, B) ∈ N :

P2(By||Ax) = [0; F (x; y)]
∀y ∈ ΩB , ∀x ∈ ΩA,

P2(¬By||¬Ax) = P2(By||Ax)
= [0; 1− F (x; y)],

∀y ∈ ΩB , ∀x ∈ ΩA.

P2([y; yU [ || ]xL; x]) = [0; F (x; y)]
P2(]yL; y] || [x; xU ]) = [0; 1− F (x; y)]

Due to Axiom L II it can be concluded:

L2(]yL; y] ||{x}) = 1− F (x; y),

and W2 describes an ordered family of one-
dimensional probability distributions as well, this
time the parameter is x:

p2(Y ≤ y||x) = 1− F (x; y).

W1 andW2 are regularly dual with respect to the
linear orders on ΩA and ΩB .

If additionally Axiom S III is fulfilled, the qual-
ity of duality is perfect, a level which cannot be
reached by any other linear order of ΩA or ΩB .

Perfect duality is given for instance in the case of
the normal law

F (x, y) =
∫ x

−∞

1
σ
√

2π
e−

1
2σ2 (t−y)2dt

for any fixed σ ∈]0; ∞[, but not in the case of the
Cauchy law:

F (x; y) =
∫ x

−∞

1
π

1
1 + (t− y)2

dt.

2) The DC-constellation: the distribution function is
discontinuous in x, but continuous in y.

Let −∞ ≤ yL < yU ≤ ∞,

Ω+
A = {x0, ..., xi < xi+1, ..., xN},

A+ = Pot(Ω+
A),

ΩA = Ω+
A \ {x0},

A = Pot(ΩA),
ΩB = {y|yL < y < yU},
B = Bor(ΩB),



and:

0 ≤ F (x; y) ≤ 1, ∀x ∈ ΩA, ∀y ∈ ΩB ,

F (xi+1; y) ≥ F (xi; y), ∀xi ∈ ΩA \ {xN},
∀y ∈ ΩB ,

F (xi; y1) ≥ F (xi; y2), ∀xi ∈ ΩA,

∀y1, y2 ∈ ΩB : y1 < y2,

F (x; y) continuous in y, ∀xi ∈ ΩA, ∀y ∈ ΩB ,

F (x0; y) = 0, ∀y ∈ ΩB ,

F (xN ; y) = 1, ∀y ∈ ΩB ,

F (xi; yL) = 1, ∀xi ∈ ΩA,

F (xi; yU ) = 0, ∀xi ∈ Ω+
A \ {xN}.

The stochastically ordered family of discrete
probability distributions

p1(X ≤ xi||y) = F (xi; y)

with continuous parameter y is described by
the W-field W1 = (ΩA; A; ΩB ; B; L1(.||.))
with L1({xi}||{y}) = F (xi; y) − F (xi−1; y),
∀xi ∈ ΩA, ∀y ∈ ΩB .

A regular nomenclature is given by
N = (NA ×NB) ∪ (NA ×NB) with

NA = {Ai|i = 1, ..., N − 1},
Ai = {x1, ..., xi}, i = 1, ..., N − 1,

NA = {Ai|i = 1, ..., N − 1},
Ai = {xi+1, ..., xN}, i = 1, ..., N − 1,

NB = {By|yL ≤ y ≤ yU},
By = [y; yU ],
NB = {By|yL ≤ y ≤ yU},
By = [yL; y].

Then it can be shown, that W1 and the W-field
W2 = (ΩB ; B; ΩA; A; L2(.||.)) with

L2([y; yU ]||{xi})=F (xi−1; y), ∀xi∈ΩA,∀y∈ΩB ,

L2([yL; y]||{xi})=1−F (xi; y), ∀xi∈ΩA,∀y∈ΩB ,

are regularly dual with respect to the linear or-
ders given on ΩA and on ΩB .

The W-field W2 describes a stochastically or-
dered family of interval probability distributions
— not classical ones — distinguished by:

P2([y; yU ] ||{xi}) = [F (xi−1; y); F (xi; y)] ,
∀xi∈ΩA, ∀y∈ΩB ,

P2([yL; y] ||{xi}) = [1−F (xi; y); 1−F (xi−1; y)],
∀xi∈ΩA, ∀y∈ΩB .

From this result it can be concluded, that

P2([y1; y2] ||{xi})
= [max(0; F (xi−1; y1)− F (xi; y2));

F (xi; y1)− F (xi−1; y2)],

∀xi∈ΩA, ∀y1 <y2 : y1, y2∈ΩB ,

and

P2({y}||{xi}) = [0; F (xi; y)− F (xi−1, y)],
∀xi ∈ ΩA, ∀y ∈ ΩB .

In the case of the classical Binomial law with pa-
rameters n and y determining W1, the dual W-
field W2 is given by

P2([0; y]||{i}) =



n∑

j=i+1

(
n

j

)
yj(1− y)n−j ;

n∑

j=i

(
n

j

)
yj(1− y)n−j


 (1)

P2([y; 1]||{i}) =



i−1∑

j=0

(
n

j

)
yj(1− y)n−j ;

i∑

j=0

(
n

j

)
yj(1− y)n−j


.

(2)

It produces

P2({y}||{i}) =
[
0;

(
n

i

)
yi(1− y)n−i

]

and allows an answer to the famous question
about the probability for success in the “next”
trial: If the premise is, that n trials produce i
successes, the argument for success in the (n+1).
trial is given by

P2(xn+1 = 1||{i}) =
[

i

n + 1
;

i + 1
n + 1

]
.

6 Some further problems

6.1 Restricting the range of the parameter

In certain situations the statistician has to combine
information about a parameter y which is given in
advance with the information stemming from the re-
alisation of a random variable. Mostly this means
explicitly that there exist restrictions concerning the
possible values of y.

In such a situation the Symmetric Theory is applied
regardless of the restriction to the ‘natural’ set of
values y: ΩB and, by means of duality, W2 are de-
fined. In a second step the restrictions are consid-
ered by means of conditional probability. If W2 is a
classical W-field, the classical concept of conditional



probability can be employed, provided that for the re-
stricted range of y: ΩR

B the condition P2(ΩR
B ||{x}) > 0

holds. If ΩR
B is of the same dimension as ΩB —

f.i. a non-degenerate interval in ΩB = R1 — but
P2(ΩR

B ||{x}) = 0, it must be concluded, that the out-
come of x and the restriction ΩR

B of the values y are
contradicting each other.

If on the other hand P2(ΩR
B ||{x}) > 0, then

PR
2 (B||{x}) :=

P2(B||{x})
P2(ΩR

B ||{x})
, ∀B ∈ B : B ⊆ ΩR

B ,

defines a classical probability field representing the
answer to the statistician’s request.

Example 1ι The W-field W2 of Example 1γ accord-
ing to 1ε is a classical one. Since the range of pos-
itive density for the argument ({y}||{x}) consists of
all (x, y) ∈ R1 × R1, the condition P2(ΩR

B ||{x}) > 0
holds for every non-degenerate interval ΩR

B ⊂ R1 and
every x ∈ ΩA. If e.g. ΩR

B := [0; +∞[, for every
B ∈ B : B ⊆ [0; +∞[ and for every x ∈ R1 the condi-
tional probability:

P2(B|ΩR
B ||{x}) =

∫
B

1√
2π

e−
1
2 (t−x)2dt

∫∞
0

1√
2π

e−
1
2 (t−x)2dt

= PR
2 (B||{x})

describes statistical inference in the situation of prior
information that y ≥ 0. If, however, for an outcome
x,

∫∞
0

1√
2π

e−
1
2 (t−x)2dt is very small, this is a problem

of interpreting the result, not of formal methods. ¤
Example 2 If a family of classical rectangular dis-
tributions with range [y − 1

2 ; y + 1
2 ] is given, Y1

as defined in Example 1αd) is a regular nomen-
clature, W1 = (ΩA; A; ΩB ; B; L1(.||.)) and W2 =
(ΩB ; B; ΩA; A; L2(.||.)) with ΩA = R1, A =
Bor(ΩA), ΩB = R1, B = Bor(ΩB),

P1(]−∞; x] ||y) = P2([y; +∞[ ||x)

=





0, x ≤ y − 1
2

x−y+ 1
2 , y− 1

2 <x<y+ 1
2

1, x ≥ y + 1
2

are mutually regularly dual classical W-fields with
respect to the linear orders on ΩA and ΩB . If f.i.
ΩR

B = [0; +∞[, an outcome x ≤ − 1
2 means contradic-

tion, an outcome x : − 1
2 < x < + 1

2 leads to

PR
2 (B||{x}) = P2(B|ΩR

B ||{x})

=
P2(B||{x})
P2(ΩR

B ||{x})

=
P2(B||{x})

x + 1
2

, ∀B ∈ B : B ⊆ [0; ∞[.

In case of x ≥ 1
2 the restriction becomes irrelevant:

PR
2 (B||{x}) =

P2(B||{x})
1

= P2(B||{x}), ∀B∈ B : B ⊆ [0; ∞[. ¤

If W2 is not a classical W-field, the intuitive concept
of conditional interval-probability [4] has to be em-
ployed instead of the classical one: the structure of
iP (B|C) consisting of the classical conditional proba-
bility p(B|C) for all structural elements of the F-field.

This applies at first to the question of a possible
contradiction of restriction and outcome: The cri-
terion in this situation is, whether there exists at
least one element p∗(.||x) of the structure M(W2),
so that p∗(ΩR

B ||x) > 0 holds. If p(ΩR
B ||x) = 0,

∀p(.||.) ∈ M(W2), this has to be interpreted as con-
tradiction.

Otherwise, restriction and outcome are compatible,
but — if necessary — the structure has to be reduced
to

MR(W2) = {p(.||.) ∈M(W2) : p(ΩR
B ||x) > 0}.

The restricted probability for every B ∈ B : B ⊆ ΩR
B ,

then is given by

PR
2 (B||{x}) = iP2(B|ΩR

B ||{x})

=

[
inf

p∈MR(W2)

p(B||x)
p(ΩR

B ||x)
; sup
p∈MR(W2)

p(B||x)
p(ΩR

B ||x)

]
.

Example 3 If the primal W-field W1 is determined
by the Binomial law for any fixed n, W2 is given by
(1) and (2). Let a restriction ΩR

B of ΩB be defined
by y ≥ η with 0 < η < 1. Concerning a possible
contradiction of restriction and outcome, (2) reveals
that in the case of η = 1

2

U2

([
1
2 ; 1

] ||{i}) > 0, ∀i = 0, 1, ..., n.

There is never a contradiction between ΩR
B and {i}!

If B = [y; 1] with y > η — so that B ⊂ ΩR
B —

according to (2) one arrives at

PR
2 (B||{i}) =

[
LR

2 (B||{i}); UR
2 (B||{i})]

with

LR
2 (B||{i}) =

∑i−1
j=0

(
n
j

)
yj(1− y)n−j

∑i
j=0

(
n
j

)
ηj(1− η)n−j

UR
2 (B||{i}) = min

(
1,

∑i
j=0

(
n
j

)
yj(1− y)n−j

∑i−1
j=0

(
n
j

)
ηj(1− η)n−j

)

Since PR
2 (ΩR

B) = [1], the result shows that LR
2 (.) as a

function of y is discontinuous for y = η. ¤



6.2 I.i.d. sample

Some of the concepts described above are useful in
a constellation of highest importance: The statisti-
cian is given the realisation of an i.i.d. sample ~x of
the size n > 1 out of a stochastically ordered family
of classical one-dimensional probability distributions
with parameter y. Instead of relying on a sufficient
estimator, the statistician wants to employ the sam-
ple as a whole for the premise of an argument about
the parameter y.

In such a situation the statistician in a first step
should neglect his information that the parameter y is
the same for all elements of the sample. On the con-
trary he attributes a parameter y(r) to each x(r) and
takes it as granted that y(r) influences only x(r) and no
other element of the sample. In this way he establishes
strong independence of the arguments (A(r)||B(r)) ac-
cording to Axiom L III.

Let W(r)
1 be the W-field describing arguments with

premise about y(r) and conclusion about x(r), then

W1 = X
n

r=1
W(r)

1

constitutes a W-field, for which each W(r)
1 is a

projection-field. A fundamental theorem of the Sym-
metric Theory says that due to strong independence

W2 = X
n

r=1
W(r)

2

holds together with

N =
⋃n

r=1

{(
Ω(1)

A × ...×A(r) × ...× Ω(n)
A ,

Ω(1)
B × ...×B(r) × ...× Ω(n)

B

)
∣∣∣
(
A(r), B(r)

)
∈ N (r)

}
,

(3)

and that S = (W1; N ; W2) is an S-model, provided
that S(r) = (W(r)

1 ; N (r); W(r)
2 ), r = 1, ..., n, are S-

models.

The W-field W2 defines the probability of an argu-
ment from a premise about ~x to the n-dimensional ~y.
The additional information that y(1) = ... = y(n) = y
distinguishes a one-dimensional subset ΩR

B of values
y in the space ΩB of conclusions. If W2 is a classical
W-field, a contradiction between the outcome ~x as a
premise and ΩR

B as a conclusion has to be admitted
if P2(ΩR

B ||{~x}) = 0 for a discrete probability-field or∫
ΩR

B
f2(y, .., y||{~x})dy = 0 in the case of an existing

n-dimensional density f2(y(1), ..., y(n)||{~x}).
If otherwise P2(ΩR

B ||{~x}) > 0, for any

B ∈ B : B ⊆ ΩR
B classical conditional probability

P2(B|ΩR
B ||{~x}) =

P2(B||{~x})
P2(ΩR

B ||{~x})
resp.
=

∫
B

f2(y, ..., y||{~x})dy∫
ΩR

B
f2(y, ..., y||{~x})dy

can be understood as the probability of B if all y(r)

all equal, and is designated PR
2 (B||{~x}).

Example 1ζ Let W2 be given by N(x; 1) according
to Example 1γ and x̄ = 1

n

∑n
r=1 x(r). Then

f2(y(1), ..., y(n)||{x̄}) =
n∏

r=1

1√
2π

e−
1
2 (y(r)−x(r))2 .

f2(y, ..., y||{~x}) =
1

(2π)
n
2

e−
1
2

Pn
r=1(y−x(r))2

=
1

(2π)
n
2

e
− 1

2

h
n(y−x̄)2+

Pn
r=1x(r)2−nx̄2

i
;

∫ +∞

−∞
f2(y, ..., y||{~x})dy

=
1

(2π)
n
2

e
− 1

2

hPn
r=1 x(r)2−nx̄2

i
·
∫ +∞

−∞
e−

n
2 t2dt;

f2(y, ..., y||{~x})∫ +∞
−∞ f2(y, ..., y||{~x})dy

=
e−

n
2 (y−x̄)2

√
2π 1√

n

=
√

n√
2π

e−
n
2 (y−x̄)2

= fR
2 (y||{~x}).

The density — and therefore the probability — for the
argument with premise ~x and conclusion y is obviously
the one which is also created by the perfectly dualW∗

2 ,
if W∗

1 describes the probability of the argument with
premise {y} and conclusion {x̄}.
If W2 is not a classical W-field the intuitive concept
of conditional interval-probability has to be applied
instead of the classical conditional probability. ¤

Example 4: Let W(r)
1 = (ΩA; A; ΩB ; B; L

(r)
1 (.||.)),

ΩA = {0; 1}, A = Pot(ΩA), ΩB = [0; 1], B =
Bor(ΩB), L

(r)
1 ({0}||y(r)) = 1− y(r), the simplest case

of a DC-constellation. According to (1) and (2) for
W(r)

2 = (ΩB ; B; ΩA; A; L
(r)
2 (.||.)) it follows for the

regular S-model S(r) = (W(r)
1 ; N (r); W(r)

2 ) with N (r)

like N as described in 5.2:

P
(r)
2 ([0; y(r)]||{0}) = [y(r); 1]

P
(r)
2 ([0; y(r)]||{1}) = [0; y(r)]

for r = 1, ..., n.



Let W1 = X
n

r=1
W(r)

1 , W2 = X
n

r=1
W(r)

2 and N according
to (3).

Then

P2([0; y(1)]× ...× [0; y(n)]||{x(1), .., x(n)}) =

=





[∏n
r=1 y(r); 1

]
, if x(1) = ... = x(n) = 0;[

0;
∏

r∈I y(r)
]

with I :={r∈{1, ..., n}|x(r)=1},
if 1 ∈ {x(1), ..., x(n)}.

The calculation of conditional interval-probability ac-
cording to the intuitive concept relies on the extreme
values of the classical conditional probabilities for
structural elements.

α) x(1) = ... = x(n) = 0: For every 0 < Y < 1 the
smallest value out of the structure for

p2([0; Y ]× ...× [0; Y ]||{0, ..., 0})
p2([0; 1]× ...× [0; 1]||{0, ..., 0})

= p2([0; Y ]× ...× [0; Y ]||{0, ..., 0})
is found for

p2([0; y(1)]× ...× [0; y(n)]||{0, ..., 0}) =
n∏

r=1

y(r).

For this n-dimensional classical probability the
density f2(y(1), ..., y(n)||{0, ..., 0}) = 1. There-
fore

∫ Y

0

f2(y, ..., y||{0, ..., 0})dy = Y,

∫ Y

0
f2(y, ..., y||{0, ..., 0})dy∫ 1

0
f2(y, ..., y||{0, ..., 0})dy

=
Y

1
= Y,

L2([0; Y ]||{0, ..., 0}) = Y.

The largest value out of the structure for
p2([0; Y ] × ... × [0; Y ]||{0, ..., 0}), Y > 0, obvi-
ously is 1.

Therefore: P2([0; Y ]||{0, ..., 0}) = [Y ; 1], inde-
pendent of n (!).

β) x(r) = 1 : r ∈ I 6= ∅; x(r) = 0 : r /∈ I; ~x(I)

The smallest value for
p2([0; Y ]× ...× [0; Y ]||{~x(I)}), Y < 1, ob-
viously is 0; the largest one is created by the
structural element with p2([0; Y ]||{0}) = 1,
p2([0; Y ]||{1}) = Y . f2(y(1), ..., y(n)||~x(I)) is
independent of y(r) : r /∈ I, and in the subspace
generated by y(r), r ∈ I, the density with
dimension |I| has the value 1.

This produces — in analogy to the lower limit in
the case {0, ..., 0}: U2([0; Y ]||{~x(I)}) = Y and

P2([0; Y ]||{~x(I)}) = [0; Y ] independent of n and
of |I| (!).

The result says, that increasing the sample does
not produce more accuracy in evaluating argu-
ments with conclusions about y. Of course a
substantial gain in evidence is achieved by us-
ing the Binomial model as described in 5.2. But
Example 4 — describing indeed a special case —
demonstrates that the impression generated by
Example 1ζ must not be generalized. ¤

6.3 Updating

It must always be borne in mind, that the subject of
the Symmetric Theory are arguments, not events or
propositions. If an S-model presents dual probability
for arguments based on an outcome {x1}, this premise
remains unchanged, whatever manipulations are ap-
plied in the field of conclusions. This is evidentially
true, even if updating by means of Bayes’ Theorem
considers any further outcome {x2}.
If, however, an S-model produces dual probability
based on a premise about {x1, x2}, this represents
a totally different result — even if in certain cases the
probabilities may be equal for mathematical reasons.

This aspect is a fundamental difference between the
Symmetric Theory and those approaches of statistical
inference which produce probability statements about
parameters (see T. Seidenfeld [1], pp. 139–140).
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