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Abstract

In several economic applications (e.g. marketing re-
search, microsimulation models) there is the need to
consider different data sources and to integrate the in-
formation coming from them. In this paper we show
how integration problems can be managed by means
of coherence for partial conditional probabilistic as-
sessments. Coherence allows us to combine the knowl-
edge coming from the different sources, included those
(possibly) given from field experts, without necessar-
ily assuming further hypothesis (as conditional inde-
pendence). Moreover, inferences and decisions can be
drawn taking in consideration also logical constraints
among the variables. An example showing advantages
and drawbacks of the proposed method is given.

Keywords. Coherent conditional probability, data
fusion, statistical matching, inference.

1 Introduction

The integration problem of knowledge coming from
several separate micro data bases, which have some
variables in common as well as some variables
recorded only in one data base, occurs in several eco-
nomic applications, some examples are marketing re-
search [19] and microsimulation modeling (e.g. from
economic and administrative sources for public policy
and social research) [21, 22, 23, 34] (see also Section
2). This problem may be represented by the follow-
ing simple situation: there are two different sources,
A and B, the first one contains data from one sample
on the variables (X,Y ) and the second one collects
data from another sample on (X, Z), so data on X
are available in both sources. In this context data are
missing by design since they have been already col-
lected separately, and to get jointly data on Y and Z
would be expensive and time-consuming.

There are analytic techniques for combining data from
different sources, which have been developed since

1970s (see references in [24]): we recall, for example,
those based on conditional independence assumption,
i.e. the variables Y and Z are independent condition-
ally on X. However, in several situations the inde-
pendence assumption is not adequate, as first raised
by Sims [29] (see also [23, 25, 26, 30]). Other meth-
ods aim at incorporating auxiliary information about
relationships between Y and Z to avoid or to relax
conditional independence assumption (see, e.g. [30]).
Although this is an important case, it is not always
feasible because the required external knowledge may
not be available.

Actually, since there are many distributions on
(X, Y, Z) compatible with the available partial infor-
mation on (X,Y ) and (X, Z), it is too restrictive to
consider just one of the compatible distributions, ob-
tained perhaps by taking a specific assumption (as
already noted in [10, 28] and for missing data prob-
lem [11, 18, 20, 32]). This aspect is here faced by
considering a coherence notion for partial conditional
assessments (first introduced by de Finetti [13] and
studied by several authors, see, e.g. [8]). In fact,
coherence allows to check the compatibility of par-
tial (conditional) assessments and to manage further
available knowledge, for example coming from field
experts (see also [6]).

We describe how the data contained in the different
sources can be used to evaluate conditional proba-
bility assessments and how to manage logical con-
straints (called also structural zeros) characterizing
the relevant links among variables describing the phe-
nomenon. We prove that when there is no logical con-
straint among the variables, coherence is always sat-
isfied and thus conditional independence assumption
is legitimate from a syntactical point of view (even if
it is useful to look for all compatible coherent exten-
sions). Further we show that when logical constraints
are present it is necessary to check the global coher-
ence of the relevant partial assessments drawn from
the different sources (see Section 6). When coherence



is not satisfied we need to detect where incoherencies
are localized by looking for the “minimal” incoherent
assessments and to remove them in order to restore
coherence (see Section 4). This aspect is faced by
means of the algorithms proposed in [4, 5, 16], which
allows also to draw inferences in this setting and to
take into account logical constraints. For each (condi-
tional) event this approach aims at building directly
the interval of all coherent values without to achieve a
preliminary complete (artificial) data base containing
all variable of interest (as e.g. in [21, 24, 28, 36]).

Finally in Section 6 we introduce an example built
from data taken from [10] to better show advantages
and drawbacks of the proposed method.

2 Some relevant applications in
economics

As already remarked in the Introduction, the main
aim of integration processes is to give joint (or con-
ditional) knowledge on the variables related to data
available in different sources. This problem arises
from several applications in different areas.

Among the applications we recall those related to inte-
grated analysis of economical variables as consumer’s
expenditures and income. For example, in Italy (as
noted in [9]) there is no source describing these vari-
ables jointly, in fact income is related to the House-
hold Balance survey managed by the Bank of Italy,
while different sources can be used for expenditures:
among the others, the Household Expenditure survey
and the Household Multipurpose survey, both man-
aged by National Institute of Statistics. Examples
of fusion of such data sets are the following ones [9]:
construction of social accounting matrices including
economic indicators (e.g. per capita income and eco-
nomic growth); analysis between income and health
expenditures; microsimulation models for analysis of
public policies (to predict the impact of policy changes
and aggregate characteristics of tax, social security
and welfare benefit programs).

Early work in the area of tax and benefit modeling
has been described in [3, 21]: in particular in the first
paper Tax Model with data from the 1965 Current
Population Survey has been matched with the Survey
of Financial Characteristics of Consumers, which pro-
vides extra knowledge on income from rent and inter-
est. The merged file helps to improve the evaluations
of the income size distribution made by the Office
of Business Economics, which previously relied on re-
lating cross-tabulations from several different sources.
A similar statistical match has been performed in the
second quoted paper, where matching data from the

1967 Survey of Economic Opportunity with the 1966
Tax File are involved and provide demographic in-
formation, data on non-taxable income, and income
data for families who do not file a tax return. This
latter group consists mainly of families with low in-
comes. However, Survey of Economic Opportunity
does not collect knowledge on capital gains, and un-
derestimates higher incomes. The Tax File filled these
gaps, providing more complete (and probably more
accurate) knowledge on taxable income. The merged
database provides comprehensive information on the
distribution of income. This has been used to study
the distribution of federal state and local taxes.

We recall also the economic Hungarian applications
based on the combination of knowledge from three
different surveys [31]: income and demographic vari-
ables from the Household Panel Survey, consumption
variables from the Household Budget Survey of the
Hungarian Central Statistic Office and tax variables
from administrative tax records. The analysis have
been implemented for producing outputs showing the
gains or losses due to policy changes, thus the distri-
bution impact of a policy measure on different types
of families or income levels is derived.

Integration of sources regards also problems related
to market and social research: advertisers and media
planners rely on measurement of media usage (e.g.
television ratings and magazine and newspaper read-
ership), which are usually collected in separate sources
(see, e.g. [19]).

3 Coherent conditional probability

The notion of coherence for an uncertainty measure is
necessary for managing functions defined on sets not
necessarily closed with respect to the usual operations
(more precisely it is not required that the function is
defined on a Boolean algebra or on the product of a
Boolean algebra and an additive set). In this paper
we consider coherence for conditional probability in
the sense of de Finetti [13] and Dubins [14]:

Definition 1 Given a Boolean algebra B and an ad-
ditive set H (closed under finite unions) such that
H ⊂ B and ∅ 6∈ H, a conditional probability on B×H
is a function P (·|·) into [0, 1], which satisfies the fol-
lowing conditions:
(i) P (H|H) = 1 for every H ∈ H,
(ii) P (·|H) is a finitely additive probability on B for

any H ∈ H,
(iii) P (E ∧ A|H) = P (E|H)P (A|E ∧ H), whenever

E,A ∈ B and H,E ∧H ∈ H



Actually, coherence gives a condition allowing to re-
gard a partial assessment as restriction of a (condi-
tional) probability.

Definition 2 Given an arbitrary set of conditional
events F , a real function P on F is a coherent con-
ditional probability assessment if there exists E ⊇ F
with E = B × H (where B is an algebra, and H is
an additive set with H ⊂ B) such that there exists a
conditional probability P ′(·|·) on E extending P .

A characterization of coherence for coherent condi-
tional probabilities has been given in [8], we recall
this result only in the finite case, for the general case
we refer to the quoted paper.

Theorem 1 Let F = {E1|H1, ..., En|Hn} be an arbi-
trary finite family of conditional events. Denote by B
and C the algebra and the set of atoms generated by
UF = {E1,H1, ..., En,Hn}. For a real function P on
F the following statements are equivalent:

(i) P is a coherent conditional probability on F ;

(ii) there exists (at least) a family of probabilities
P = {P0, ..., Pk}, each probability being defined on
a suitable subset Aα ⊆ B (with A0 = B and, for
α = 1, ..., k, Aα = {E ∈ Aα−1 : Pα−1(E) = 0}),
such that for any Ei|Hi ∈ F there exists a unique Pα

with Pα(Hi) > 0 and

P (Ei|Hi) =
Pα(Ei ∧Hi)

Pα(Hi)
.

(iii) there exists a sequence of compatible systems (Sα)
with unknowns xα

r ≥ 0 associated to the atoms Cr ∈ C,




∑

Cr⊆Ei∧Hi

xα
r = P (Ei|Hi)

∑

Cr⊆Hi

xα
r , if

∑

Cr⊆Hi

xα−1
r = 0

∑

Cr⊆Hα
0

xα
r = 1

xα
r ≥ 0

where xα (with r-th component xα
r ) is the solution of

the system Sα, and x−1
r = 0 for any Cr; moreover,

Hα
0 denotes the union of the conditioning event Hi

such that
∑

Cr⊆Hi
xα−1

r = 0.

Condition (ii) gives a characterization in terms of
a class of unconditional probabilities {P0, . . . , Pk}
and it allows a “local” representation of a condi-
tional probability as a “ratio” of suitable uncondi-
tional probabilities of the above class. While condi-
tion (iii) gives an operative tool to check coherence by
solving a sequence of linear systems where unknowns
are probabilities of atoms (i.e. the possible events of
the form E∗

i ∧H∗
1 ∧ . . . ∧E∗

n ∧H∗
n, where E∗

i - analo-
gously H∗

i - stands for either Ei or Ec
i ).

The problem of checking coherence presents computa-
tional difficulties related to the number of atoms and
so to the construction of matrix of atoms (the problem
is NP-complete, see [1]), hence some strategies have
been given to circumvent these computational difficul-
ties: in [4] conditions allowing to split the coherence
problem in subproblems have been given to avoid to
build the whole matrix, while in [16, 17] a genera-
tion column technique, which considers only suitable
sub-matrices, is proposed.

Another important feature is the possibility of extend-
ing a coherent conditional probability assessment on
F to new (conditional) events [8].

Theorem 2 If P is an assessment on a family of
conditional events F , then there exists a (possibly not
unique) coherent extension of P to an arbitrary fam-
ily F ′ of conditional events, with F ′ ⊃ F , if and only
if P is coherent on F .

In particular, supposed that P on F is coherent, if
F ′ = {E|H}∪F , the coherent values p = P (E|H) are
all the values of a suitable closed interval [p, p] ⊆ [0, 1],
with p ≤ p (see e.g. [8]).

If the events E ∧H and H are logically dependent on
UF (i.e. they are union of some atoms generated by
UF ), the problem is to find the minimum and maxi-
mum value of

P (E|H) =
Pα(E ∧H)

Pα(H)

with α such that Pα(H) > 0 for every class P agreeing
with P (in the sense of condition (ii) of Theorem 1).

Actually, the problem can be solved by adding to sys-
tems Sα (with α ≥ 0) the constraint

∑
Cr⊆H xα

r = 0
till the system is compatible. If for α the system Sα

with the above constraint has no solution, then all
possible solutions of system Sα give positive probabil-
ity to H. Then, the minimum and maximum coherent
value for P (E|H) coincides with

min / max
∑

Cr⊆E∧H

yα
r

under S ′α that is




∑
Cr⊆Ei∧Hi

yα
r = P (Ei|Hi)

∑
Cr⊆Hi

yα
r if Pα−1(Hi) = 0

∑
Cr⊆H

yα
r = 1

yα
r ≥ 0 Cr ∈ CF ∩ Aα

Note that the unknowns xα
r and yα

r are linked by a

normalization constant, xα
r = yα

r∑

Cr∈CF∩Aα

yα
r

.



Actually, when any solution xo of S0 is such that∑
Cr⊆H xo

r > 0, the coherent interval [p, p] for E|H
coincides with the so-called natural extension [35].

When E∧H or H are not logically dependent on UF ,
the bound p [or p] is related to the conditional prob-
ability of the maximum [minimum] (with respect to
⊆∗) event logically dependent on UF contained [con-
taining] E|H, where inclusion operation ⊆∗ between
conditional events is defined as follows (see, e.g. [8]),

A|H ⊆∗ B|K ⇐⇒ AH ⊆ BK and BcK ⊆ AcH.

Therefore, the maximum event (with respect to ⊆∗)
contained in E|H is

(E|H)∗ = (E ∧H)′|(E ∧H)′ ∨ (Ec ∧H)′′

and the minimal event containing E|H is

(E|H)∗ = (E ∧H)′′|(E ∧H)′′ ∨ (Ec ∧H)′,

with (G)′ =
∨

Cr⊆G

Cr and (G)′′ =
∨

Cr∧G 6=∅
Cr.

Algorithms to make inference on the base of coher-
ence have been studied in [2, 4, 5, 7]. One of the main
features of these algorithms is that both logical con-
straints among events and numerical assessments can
be managed.

Notice that the extension values are obtained sim-
ply from the probabilistic partial assessment without
requiring other assumptions. Moreover, one can in-
clude other judgements coming from a field expert or
other sources: for example, conditional independence
judgements among some events [33] or preferences ex-
pressing the idea “not more probable than” [6].

4 Integration of sources in a coherent
setting

Let us denote by (X1, Y1), ..., (XnA
, YnA

) and by
(XnA+1, ZnA+1), ..., (XnA+nB

, ZnA+nB
) two random

samples (whose variables have finite range). We
suppose that the two samples are related to the
same population of interest and are drawn accord-
ing to the same sampling scheme. We can regard,
under the above conditions, (X1, Y1), ..., (XnA

, YnA
)

(analogously (XnA+1, ZnA+1), ..., (XnA+nB
, ZnA+nB

))
exchangeable, as well as the sequence X1, ..., XnA ,
XnA+1, ..., XnA+nB (actually the above variables
could be seen as partially exchangeable [12]).

We can evaluate from the two files the relevant proba-
bility values: from file A the conditional probabilities
PY |(X=xi)(yj), that the next unit has Y = yj on the
hypothesis that (X = xi) (for any value xi taken by
X), and from file B the conditional probability val-
ues PZ|(X=xi)(zk) (that the next unit has (Z = zk) if

(X = xi)). In the following we denote, if no misunder-
standing occurs, the above conditional probabilities
by pj|i and pk|i, respectively. Moreover, from data on
both files we can evaluate pi = P (X = xi).

By evaluating the relevant probabilities from the fre-

quencies it follows pj|i = nij·
A

ni··
A

(if ni··
A > 0), analo-

gously pk|i = ni·k
B

ni··
B

(if ni··
B > 0), and pi = ni··

A +ni··
B

nA+nB
,

where nA, nij·
A , ni··

A denote, respectively, the number of
observations in file A, those taking the value (xi, yj)
and those having xi (the quantities related to file B
are defined analogously). Note that the above rele-
vant quantities pj|i, pk|i are well-defined if ni··

A and
ni··

B , respectively, are greater than 0, while, when e.g.
ni··

A = 0, that means there is no observation in file A
taking value xi, then the value of pj|i cannot be as-
sessed through frequencies, but it could be given by
a field expert or deduced from auxiliary knowledge
(even it is not required to assess pj|i for any xi).

Notice that the values pj|i, pk|i, pi can be evalu-
ated according to different paradigms, but we do not
want to stress which evaluation is better to be con-
sidered, while we focus on the relevant aspects aris-
ing after this choice. For example, the above assess-
ment can be derived by assuming that the variables
(X, Y, Z) have multinomial distribution with parame-
ters pijk = P (X = xi, Y = yj , Z = zk) and by taking
the maximum likelihood estimations. Another choice
consists into assuming that (X, Y, Z) given Θ = θijk

has multinomial distribution and Θ Dirichlet distri-
bution with suitable parameters, then one might take
expected values of posterior distribution or the max-
imum posterior values as evaluations of the relevant
conditional probabilities.

Given pj|i, pk|i, pi, for any i, j, k obtained, one needs
to check coherence of the whole assessment. First of
all, note that coherence of each single assessment e.g.
{pj|i}j,i (analogously {pk|i}k,i or {pi}i) is actually as-
sured, as shown by the following result, by the follow-
ing condition: for any xi,

∑
j pj|i = 1 (and pj|i = 0

for any yj such that (X = xi) ∧ (Y = yj) = ∅).
Proposition 1 Let X, Y be two random variables. If
for any value xi of X the assessment {PY |X=xi

(yj)}yj

is coherent, then the whole assessment
{PY |X=xi

(yj) : for any xi, yi}
is coherent iff

∑
xi

PX(xi) = 1 and PX(xi) ≥ 0 for
any xi.

Proof: If {PY |X=xi
(yj)}yj is coherent for a given xi,

then the system S0 admits a solution xi with com-
ponents xij . Since the events (X = xi), with xi

in the range of X, are pairwise incompatible, coher-
ence of the assessment {PY |X=xi

(yj) : for any xi}



follows easily from Theorem 1: in fact, the relevant
system S0 related to the above assessment has groups
of equations (each group related to a given xi) inde-
pendent from the others, in the sense that the un-
knowns present in the equations related to xi are not
in those related to xj , for j 6= i. The vector yi = xi

pi
,

with pi = PX(xi), is solution of the group of equation
related to xi. Then, a solution of system S0 is given
from the vector y with components the subvectors yi;
in fact also the last equality of system is satisfied if
and only if the sum of pi is equal to 1.

2

Now, one needs to check coherence of the global as-
sessment

{PY |X=xi
(yj), PZ|X=xi

(zk), PX(xi) : for any yj , zk, xi}.

Actually, when the partitions EX , EY , EZ associated
to the variables are logically independent (i.e. for any
A ∈ EX , B ∈ EY , C ∈ EZ , A ∧ B ∧ C 6= ∅) coherence
is assured as proved by the following result:

Theorem 3 Let X, Y, Z be three finite random vari-
ables. Given the following three coherent assessments
{PX(xi)}xi , {PY |X=xi

(yj)}yj and {PZ|X=xi
(zk)}zk

, if
the partitions EY , EZ are logically independent with re-
spect to EX (i.e. A ∧ B ∧ C 6= ∅ for any A ∈ EX ,
B ∈ EY , C ∈ EZ s.t. A ∧ B 6= ∅ 6= A ∧ C), then the
whole assessment

{PY |X=xi
(yj), PZ|X=xi

(zk), PX(xi) : for any yj , zk, xi}

is coherent.

Proof: From Theorem 1 one has that an assessment
is coherent iff there exists a sequence of compatible
systems Sα. From the fact that the three assessments
are coherent one has that, for any yj , PY |X=xi

(yj) ≥ 0
and

∑
yj

PY |X=xi
(yj) = 1. Then, by denoting the

atoms Cijk = (X = xi) ∧ (Y = yj) ∧ (Z = zk) and
the associated unknown (i.e. probabilities of atoms)
by xijk, the system S0 is




∑
k xijk = PY |X=xi

(yj)
∑

k,j xijk for any yj∑
j xijk = PZ|X=xi

(zk)
∑

k,j xijk for any zk∑
j,k xijk = PX(xi)

∑
i,k,j xijk for any xi∑

i,k,j xijk = 1
xijk ≥ 0

For any atom Cijk one can define e.g.

xijk = PY |X=xi
(yj)PZ|X=xi

(zk)PX(xi),

in fact the first block (analogously the second one)
of equations, related to yj (related to zk), is satisfied
being

∑
k xijk = PY |X=xi

(yj)PX(xi) and moreover∑
k,j xijk = PX(xi). The last equation holds since the

assessment PX(xi) is coherent. Some equations of the

first system could be satisfied trivially, it means that
the solution associated to the conditioning events is
0, so in this case one should check the compatibility
of the system S1, which again has solution, that is of
the same form of that given for S0.

2

Notice that logical independence of EX , EY , EZ implies
logical independence of EY and EZ with respect to EX ,
then Theorem 3 shows that coherence is assured also
when each logical constraint links either EX and EY

or EX and EZ .

Remark 1 The solution found in the proof of The-
orem 3 is such that Y and Z are independent condi-
tionally on X (according to the classical independence
definition), so when there is no constraint involving
the variables Y and Z the assessment is coherent and
the independence assumption, used by many authors
in the integration problem (as recalled in the Intro-
duction), is legitimate from coherence in the sense
that it is compatible from a syntactical point of view.
However, as noted in several papers [23, 25, 26, 29, 30]
this assumption could be not adequate and we must
look for all the solutions.

On the other hand, when there are some logical con-
straints among the variables Y and Z, the whole co-
herence is not assured by coherence of the single as-
sessments (see next section). Notice that the need
of managing logical constraints arises from practical
applications, as shown by the following example.

Example 1 A population of N persons, has two mu-
nicipalities. A file A contains the variable munici-
pality (M1 and M2 denote respectively that a person
lives in the first or second municipality) and the vari-
able age X, which has two categories: < 18 and ≥ 18.
While data in file B are related to possession of a driv-
ing licence (event D) and to municipality variable.
Since in some countries (as e.g. in Italy) one can-
not have driving licence if his/her age is less than 18,
then, a logical constraint between the variables col-
lected in different files is present: (X < 18) ∧D = ∅
(or equivalently D ⊆ (X ≥ 18)).

Consider the assessments: that evaluated from file A

P ((X < 18)|M1) =
7
22

, P ((X < 18)|M2) =
9
29

,

that from file B

P (D|M1) =
3
4
, P (D|M2) =

11
16

.

The assessment computed from file A (analogously
that obtained from file B) is coherent, but it is easy to
check that the whole assessment with p1 = P (M1) is
not coherent: the atoms are the following omes Ci12 =
Mi ∧ (X < 18) ∧ Dc, Ci21 = Mi ∧ (X ≥ 18) ∧ D,
Ci22 = Mi ∧ (X ≥ 18) ∧ Dc, with i = 1, 2 and S0



admits no solution since the sub-system (related to
P ((X < 18)|M1), P (D|M1) and p1 = P (M1))





x112 = 7
22 (x112 + x121 + x122)

x121 = 3
4 (x112 + x121 + x122)

x112 + x121 + x122 = p1

xijk ≥ 0

has no solution. This shows that when there are log-
ical constraints among variables related to different
assessments it is necessary to check coherence.

2

When the global assessment is not coherent, then in-
coherence must be localized, in the sense we need to
find the minimal restriction of the whole assessment,
which is not coherent. Then, starting from the whole
assessment on the set of conditional events F , i.e.

{(X = xi), (Y = yj)|(X = xi), (Z = zk)|(X = xi)}i,j,k

we need to remove the minimal set E of events from F
such that a restriction on G ⊆ F \ E is coherent. The
set G can be not univocally defined since the values
generating incoherence can be induced also from other
values. While the set E is uniquely determined and
must be found among the conditional events

{(Y = yj)|(X = xi) , (Z = zk)|(X = xi)}
involved in the logical constraints, as follows from the
result below.

Theorem 4 Let X, Y, Z be three finite random vari-
ables. Given three coherent assessments {PX(xi)}xi ,
{PY |X=xi

(yj)}yj and {PZ|X=xi
(zk)}zk

, if for each xi

the assessment {PY |X=xi
(yj), PZ|X=xi

(zk)}{yj ,zk} is
coherent, then the whole assessment

{PY |X=xi
(yj), PZ|X=xi

(zk), PX(xi) : for any yj , zk, xi}
is coherent.

Proof: If for any given xi the assessment
{PY |X=xi

(yj), PZ|X=xi
(zk) for any yj and zk} is co-

herent, then it means that for any xi the system




∑
k xijk = PY |X=xi

(yj)
∑

k,j xijk for any yj∑
j xijk = PZ|X=xi

(zk)
∑

k,j xijk for any zk∑
k,j xijk = 1

xijk ≥ 0

admits a solution xi with components xijk. Then, let
yijk = xijk

pi
where pi = P (X = xi) > 0, it is easy

to check that the vector y= (yijk)ijk is a solution of
the relevant system S0. If there are some xi such that
pi = 0, then, analogously to previous step, xijk is
solution of Sα.

2

Remark 2 Theorem 4 shows how to localize the in-
coherencies, i.e. to find the set E and to determine

a “maximal” coherent restriction of the initial assess-
ment on F . Moreover, it allows to split the problem of
coherence in subproblems, in fact it shows that in the
above case it is enough to check coherence “locally”
for any given xi, so the number of atoms to compute
each time decreases.

Given a coherent restriction on G then, by means of
the inference procedure shown in Section 3, we can
find the interval of coherent values for the removed
conditional events. Inside these intervals we would
like to choose the values (on the set of removed con-
ditional events) by looking for the minimal changes
from the evaluations obtained from data, according
to any given norm. This criterion corresponds to the
minimal change from data. However, other criteria
could be proposed: for example if the evaluations are
obtained by means of maximum likelihood principle,
then we could look for the coherent evaluations that
maximize the likelihood function by choosing the like-
lihood as objective function. Analogously, when the
evaluations are obtained by means of maximum pos-
terior values, then we could look for the coherent eval-
uations that maximize the posterior.

When the minimal change according to L1 norm is
chosen the values can be found by solving a linear
programming problem (while in the other above cited
cases we can get optimization problems with non-
linear objective function).

Suppose that the set of removed conditional events is
E = {(Y = yj)|(X = i), (Z = zk)|(X = i)} (for some
j ∈ J , k ∈ K), we need to find the solution x of S0,
which minimizes

∑

i


∑

j∈J

|
∑

k xijk

pX(xi)
− pY |X=xi

(yj) | +

+
∑

k∈K

|
∑

j xijk

pX(xi)
− pZ|X=xi

(zk) |
)

.

Notice that if in the family E there are some assess-
ments pY |X=xi

(yj), pZ|X=xi
(zk) such that pX(xi) = 0,

these evaluations do not make a constraint in the
minimization problem under S0 (see Section 3), and
the optimization problem can be split in subproblems
(due to locally strong coherence, see [4]), and for any
i with pX(xi) = 0 we need to minimize
∑
j∈J

|
∑

k

y1
ijk−pY |X=xi

(yj) | +
∑
k∈K

|
∑

j

y1
ijk−pZ|X=xi

(zk) |

under the system S1 and the constraint
∑

jk y1
ijk = 1.

Then, if the assessment is globally coherent (or co-
herence is restored by the above procedure) we make
inference on any (conditional) event of interest (as



shown in Section 3) by solving suitable linear pro-
gramming problems, for example to find the coherent
values for (X = xi, Y = yj , Z = zk) we should to com-
pute the minimum and the maximum of xijk under
the system S0. Analogously, for (Y = yj)|(Z = zk)
we need to add the sequence of systems Sα until the
constraint

∑
i,j xijk = 0 is satisfied. Then, when Sα

with the additional constraint is not compatible, we
add to the system Sα the constraint

∑
i,j yijk = 1 and

we find the minimum and maximum values of
∑

i yijk.

The approach introduced in this section will be ap-
plied in Section 6.

4.1 A comparison with Bayesian methods

Bayesian approach is particularly useful to handle as-
sessments given by different experts and auxiliary in-
formation [15], however in the context of statistical
matching some problems come out (see, e.g. [18, 27]):
in fact, the posterior distribution of association be-
tween Y and Z given X is equal to the prior distri-
bution, due to the lack of joint knowledge on (Y, Z)
given X. Multiple imputation [28] aims ar carrying
out a sensitivity analysis with respect to different as-
sumption parameters in the multinormal setting, in
particular ρY,Z|X . In [24] an extension of multiple
imputation is given in order to find the lower and up-
per bounds for ρY,Z . This approach is performed by
completing m times the concatenated data sets and
by generating m independent values from predictive
distribution (obtained by assuming a uniform prior on
ρY,Z|X in the hypercube). Hence, a random inspec-
tion of values assumed by ρY,Z|X is carried out.

A direct comparison of our method with those studied
in [18, 28, 24] is not feasible since they are related to
multinormal variables, while we study here only the
case for finite variables. However, our aim is in the
same line of those in the quoted papers, that is to
find lower and upper bounds for quantities related to
Y and Z given X: multiple imputation yields to a
random inspection, while in our setting we detect all
coherent probability values taking into account also
logical constraints.

5 Integration by means of different
sampling schemes

In Section 4 we study integration problem when sam-
ples are drawn from the same population by means
of the same sampling scheme. Now we suppose that
the two samples are still drawn from the same pop-
ulation, but according to different sampling schemes:
let Ss (with s = 1, 2) be the event “the unit is drawn
according to the s-th sampling scheme”. If data in

file A are drawn according to first sampling scheme,
while those in B are drawn according to the second
one, we evaluate from the first file the probability pA

j|i
that the next unit, drawn according to the first sam-
pling scheme, has Y = yj supposing that X = xi (i.e.
P (Y = yj |(X = xi) ∧ S1)), analogously we can get
pB

k|i. By supposing that the probability that a unit is
selected by both the sampling schemes is 0, we get

pi = pS1
i P (S1) + pS2

i P (S2) (1)

where pSs
i = P (X = xi|Ss) (obtained as the previ-

ous evaluations) and P (Ss) represents the probability
that a unit is sampled from a population according
to s-th sampling scheme. Notice that in this way we
reinterpret some of the results given in [28].

Obviously, the above hypothesis can be removed and
so a unit could be selected according to both the sam-
pling schemes with positive probability; then pi is not
generally univocally defined as in (1), but we can as-
sess the evaluations pSs

i = P (X = xi|Ss) and P (Ss)
as above, while pi can be computed by looking for not
just one value but by considering all coherent values
(see in Section 3).

6 Example

In order to show our proposal we develop an ex-
ample with data taken from [10]. The data are a
subset of 2313 employees (people at least 15 years
old) extracted from 2000 pilot survey of the Ital-
ian Population and Household Census. Three vari-
ables have been analyzed: Age, Educational Level
and Professional Status. In file A, containing 1148
units, the variables Age and Professional Status
are observed, while file B, consisting of 1165 ob-
servations, the variables Age and Educational Level
are considered. The variables are grouped in ho-
mogeneous response categories as follows: A1=15-
17 years old, A2=18-22 years old, A3=23-64 years
old, A4=more than 65 ; E1=None or compulsory
school, E2=Vocational school, E3=Secondary school,
E4=Degree; S1=Manager, S2=Clerk, S3=Worker.

Logical constraints between the variables Age and Ed-
ucational level (Age and Professional Status) are de-
noted by the symbol “–” (to be distinguished from the
zero frequencies) in Table 1 (Table 2): for example, in
Italy a 17 years old person cannot have a University
degree. Table 1 and 2 show, respectively, the distri-
bution of Age and Professional Status in file A, and
in file B that related to Age and Educational Level.
Additional logical constraints involving both the vari-
ables Professional Status and Educational level are
the following ones:

S1 ∧ (E1 ∨ E2) = ∅ and S2 ∧ E1 = ∅.



Prof. Status

Age S1 S2 S3 Tot.

A1 – – 9 9
A2 – 5 17 22
A3 179 443 486 1108
A4 6 1 2 9

Tot. 185 449 514 1148

Table 1: Distribution of Age and Professional Status
in file A.

Educ. level

Age E1 E2 E3 E4 Tot.

A1 6 0 – – 6
A2 14 6 13 – 33
A3 387 102 464 158 1111
A4 10 0 3 2 15

Tot. 417 108 480 160 1165

Table 2: Distribution of Age and Educational level in
file B.

By considering the frequencies as evaluation of the rel-
evant conditional probabilities, we get the assessment
for the variable Age

p(A1) =
15

2313
, p(A2) =

55

2313
,

p(A3) =
2219

2313
, p(A4) =

24

2313
;

for the Professional Status given the Age

p(S2|A2) =
5

22
, p(S3|A2) =

17

22
,

p(S1|A3) =
179

1108
, p(S2|A3) =

443

1108
, p(S3|A3) =

486

1108
,

p(S1|A4) =
2

3
, p(S2|A4) =

1

9
, p(S3|A4) =

2

9
;

for the Educational level given the Age

p(E1|A1) = 1, p(E2|A1) = 0, p(E1|A2) =
14

33
,

p(E2|A2) =
6

33
, p(E3|A2) =

13

33
, p(E1|A3) =

387

1111
,

p(E2|A3) =
102

1111
, p(E3|A3) =

464

1111
, p(E4|A3) =

158

1111
,

p(E1|A4) =
2

3
, p(E2|A4) = 0,

p(E3|A4) =
1

5
, p(E4|A4) =

2

15
.

The above assessment is not coherent, in fact the
system S0 admits no solution, so the incoherencies
need to be localized as described in previous section
(by algorithm given in [4]). It comes out that the
following restriction of the previous assessment

Atom Probab. Atom Probab.

C113 [0.0065, 0.0065] C341 [0, 0.1363]
C123 [0, 0] C342 [0, 0.1364]
C213 [0.0101, 0.0101] C343 [0, 0.0866]
C222 [0, 0.0043] C413 [0.0069, 0.0069]
C223 [0, 0.0043] C422 [0, 0]
C232 [0.0011, 0.0054] C423 [0, 0]
C233 [0.0040, 0.0083] C431 [0.0009, 0.0011]
C313 [0.3342, 0.3342] C432 [0, 0.0011]
C322 [0.0014, 0.0881] C433 [0, 0]
C323 [0, 0.0866] C441 [0.0002, 0.0014]
C331 [0.0186, 0.1550] C442 [0, 0.0011]
C332 [0.1591, 0.3821] C443 [0, 0]
C333 [0, 0.0866]

Table 3: Atoms and their coherent values.

p(E1|A4) =
2
3
, p(S1|A4) =

2
3
, p(S3|A4) =

2
9

is not coherent since from logical constraints between
Educational level and Professional Status it follows
E1 ∧ S1 = ∅ and E1 ⊆ S3, respectively.

Then, identified the minimal set of conditional events

E = {E1|A4, S1|A4, S3|A4}

involved in incoherencies, we remove this set from the
initial one F , and the restriction of p to G = F \ E is
coherent.

Now, we need to restore coherence on the conditional
events in E , so first of all we find the coherent ex-
tensions for the conditional events in E . Actually, for
E1|A4 there is only one value coherent (implied from
the restriction of p(Ei|A4) for i = 2, 3, 4), which is
obviously 2

3 . While the interval of coherent values for
S1|A4 is

[
0, 2

9

]
and that of S3|A4 is

[
2
3 , 8

9

]
.

Then, by looking for the extensions closer to the eval-
uations arising from the frequencies (since the aim is
to change the starting assessment as little as possible),
we get that

p(E1|A4) =
2
3
, p(S1|A4) =

2
9
, p(S3|A4) =

2
3
.

Now, coherence has been restored on the family F , we
are able to make inferences on the relevant (uncondi-
tional or conditional) events as shown in Section 3.
Note that the number of atoms is 25, this reduction
is due to the above logical constraints. The atoms
Cijk = Ai ∧ Ej ∧ Sk, generated by the variables Age,
Educational level and Professional Status, and their
coherent values are given in Table 3.



Educ. level

Prof. Status E1 E2

S1 – –
S2 – [0.00145, 0.09240]
S3 0.35767 [0, 0.09095]

Educ. level

Prof. Status E3 E4

S1 [0.01947, 0.15706] [0.00023, 0.13782]
S2 [0.16014, 0.38867] [0, 0.13759]
S3 [0.00396, 0.09491] [0, 0.08662]

Table 4: Coherent values for the joint distribution of
Educational level and Professional Status.

While the coherent values of the joint distribution of
Educational level and Professional Status are repre-
sented in Table 4.

Since the unconditional values yield on intervals it is
not possible to get conditional probabilities directly
from them, but we get coherent conditional probabil-
ities by means of the procedure shown in Section 3
and deeply described in [4].

For example, the probability values of the age given
that a person is a manager and his/her educa-
tional level is secondary school are the following:
P (Ai|S1∧E3) = 0, for i = 1, 2, comes out from logical
constraints, whileP (A3|S1 ∧ E3) ∈ [0.89939, 0.99408],
P (A4|S1 ∧ E3) ∈ [0.00591, 0.10060].

Moreover, the coherent probability that a person is a
manager having a degree is P (S1|E4) ∈ [0.00167, 1],
and P (S2|E4) ∈ [0, 0.99832], P (S3|E4) ∈ [0, 0.62854];
note that the length of the above intervals is close to
1, while this does not happen for the coherent values
of (Si ∧ E4) (see Table 4).

7 Conclusions

Integration of different sources has been studied in a
conditional probability setting: we have shown that
is necessary to check coherence when there are logical
constraints linking the variables Y and Z observed
in different files, moreover logical constraints must
be managed since they arise naturally from applica-
tions. On the other hand, when no logical constraint
is present the assessments, which arise (as shown in
Section 4) from different files, are always coherent.
However, the problem of restoring coherence has been
faced by solving optimization problems. Moreover, in-
ferences are drawn in a general setting by means of

coherence.

A future inspection on the integration problem of n
files by means of this approach is needed, and possibly
considering also variables not necessarily finite.

Moreover, future research will be devoted to the gen-
eral cases where samples are drawn from different pop-
ulations and according to different sampling schemes,
a first hint in this direction is given in Section 5.
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