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Abstract

Normative study of probability-agreeng orderings of
propositions, much of it rooted in a false but evocaive
conjedure of Bruno de Finetti, has typicdly sought to
abstrad creda rationality claims familiarly made for
numerica probabilities. It is now known that some
probabili ty-disagreeng orderings, e.g. posshili stic order,
syntadicdly restate probability-agredéng orderings, and
so share in any ordina probabilistic ‘rationality.” This
paper explores what remains normatively distinctive
about subjedive probability agreement. A multi set partial
ordering, charaderistic of al transitive dementary
orderings, helps provide succinct, apprehensible

necessary and sufficient ordinal conditions for
probabili ty agreement.
Keywords.  Quadlitative  probability, transtivity,

de Finetti’s conjedure, Scott’s theorem.

1 Introduction

Bruno de Finetti (1935 developed a semantics and
normative  motivation for numericd subjedive
probability based upon orderings of propasitions
acording to personal judgments about their relative
credibility. Prominent in his acount was a property often
cdled quasi-additivity,

For propositions A, B, and C, where A is exclusive of
C and B is exclusive of C: A is no lesscredible than
B just when A O0Cisnolesscrediblethat B O C.

Other properties used by de Finetti were transitivity, and
what will be cdled here boundedness, that a tautology is
more aedible than an urcetain proposition and a
contradiction is less credible than an uncerttain
proposition. De Finetti also assumed that credibility
orderings were @mplete and definite, i.e. for any
propositions A and B, A> B, B>A, or else A=B.

From these asumptions, de Finetti derived a spedfic
numerica probability for an initial set of propasitions,
provided that unboundedly many auxiliary propasitions,

judged to be equally likely, were available to compare
with the origina domain. Later authors suggested that a
suitable auxiliary domain might be adieved by
imaginary coin tosses (Savage, 1972, or by the outright
assumption of a uniform-probability red-valued random
variable (De Groat, 1970).

De Finetti, however, subscribed to a rigorously
subjedive, personalist probabilism. He doubted the
cogency of “objedive” probability notions (1949. He
would have been reluctant to introduce into his argument
any figments like those suggested by the later authors.
Except to insist on their subjedivity, De Finetti had been
vague aout the sourceof hisauxiliary propasitions.

Eventually, de Finetti put aside his ordinal-based projed
in favor of an influential gambling semantics for
numericd subjedive probability. Matters might have
rested there but for a dallenge pointedly posed by
de Finetti's friend, George Polya (1949, who held that
numbers should play little role in belief modeling.

In reply to Polya, de Finetti (1949 revived his ordina
studies, attempting to motivate a non-numericd
subjedive qualitative probability. The reply paper's
propositional domain is finite, the 2" distinct disjunctive
propositions that can be cmposed from n mutualy
exclusive aomic propasitions. The auxiliary domain of
ealier ordinal work, whose only intended purpose had
been to extend order into spedfic humbers, was absent in
1949

De Finetti treged ordinal assertions as smultaneous
linea inequality constraints. For example, the as<ertion
a Ob > c becomesthe onstraint p(a) + p(b) > p( c).
Such linea systems had ealier been the vehicle by
which de Finetti had developed his gambling semantics.

De Finetti conjedured that quasi-additivity, transitivity,
and baundedness sufficed for a finite complete and
definite ordering to be probability agreeng. Probability
agreement occurs when there exists ome probability
distribution p() on the propasitions in an ordering, such
that A= B inthe ordering just when p( A) = p( B).



De Finetti's conjedure is false. Kraft, Pratt, and
Seidenberg (1959 constructed a quasi-additive,
transitive, bounded, and definite ordering of the 32
propositions built on five @oms which included the
assertions:

alcOd>b0Oe alle>cOd
bOc>ald d>alc
There is no agreang probability. Summing the

inequalities above yields the assrtion that the quantity
2p(a)+p(b)+2p(c)+2p(d)+p(e) is dgrictly greaer than
itself, a contradiction among the nstraints.

Kraft, et al. also showed that a finite variation upon
de Finetti's auxiliary domain method, along with the
conjedure’s asauumptions, sufficed for demonstrating the
existence of an agreeng probability. The authors framed
their argument to avoid comparisons between the original
and the auxiliary events, and between conjunctions
involving different original events (e.g. “heals-and-A"
might be compared to “tails-and-A” but not to “heads-
and-B").

These is reason to daubt whether this repair strategy, or
any dtrategy feduring an auxiliary domain, adieved
de Finetti’s goals in 1949 for a transparently subjedive
foundation of qualitative probability. Remurse to coins,
suggested by the Kraft group, would fal espedally short
of de Finetti’s plausible goals.

Moreover, de Finetti had been aware that introducing an
auxiliary domain could rescue his conjedure if the need
arose (1949). He did not pursue the posshility. It seems
likely that part of the beauty of the mnjedure for
deFinetti was the &sence of any auxiliary domain
congruent to the outcomes of some gambling apparatus,
so avoiding that blemish upon subjedivist motivations
which Cox (1946 criticized as “toolmarks’ betraying an
origin in frequentist intuiti on.

In any casg, it follows immediately from Kraft, Pratt, and
Seidenberg’ s results that:

Scott’s Theorem (1964. Any finite system of
simultaneous linea inequalities on abounded damain, all
of whose nonzero coefficients are one (as ordered
digunctions engender), has a solution unless there is
some finite combination of constraints of the same weak
sense where & least one inequality is strict, such that
ead of the aoms appeas the same number of times on
ead side of the inequaliti esin the combination.

Scott obtained this ‘uninterpreted’ version of the key
sufficient condition for probability agreement by distinct
means, deferring to Kraft, Pratt, and Seidenberg's
priority in the esence Scott’s theorem is described as
‘uninterpreted’ in that he dedined to provide aly
normative agument to explain why one would ever want
to count the number of times ead atom appeaed on eah
side of a system of inequalities. Although Scott did not

provide such an argument, there neverthelessare suitable
arguments he might have made, as will be discussd in
the next section.

In the decales snce then, many other authors have built
on Kraft, et al. and Scott, seeing other sufficient
conditions (often relaxing neaessty) for probability
agreement, along with answers to related questions, such
as sufficient conditions for agreement with exactly one
density. Fishburn (1996 includes a survey of, and
pointersinto, the breadth of this work.

What is ught in the present paper are necessry and
sufficient conditions for finite probability agreement, of
both qualitative and unambiguously subjedive charader,
whose interpretation in the context of belief modeling
should motivate what an additive measure might have to
do with the relationships among ordered beli efs.

2 TheTask Perspedive

In fad, de Finetti and many of those who came after him
clealy wished for something more. There was hope that
there might be necessary and sufficient conditions for
probability agreement that were dso necessary for the
achievement of rationality, however that estate might be
defined.

It is now known that there ae no such ordinal conditions.
The propasitional orderings of a linea posshility
syntadicdly restate the ordering assertions of some
probabili ty densities which agree with the posshility on
the order of the aoms (Snow, 2001). Possbility orders
digunctions acording to the maximum value among
their digoined atoms; O has a value of zero. In alinea
possbility, al atomic values are distinct. Except for the
Bodean distribution (exadly one nonzeo atomic
value), posshility is not probability agreeng.

The probability density whose @omic values' numerators
are successive powers of two (for instance with 5
uncertain atoms, values of 1/31, 2/31. 4/31, 8/31, and
16/31) relates to the aomicdly agreeng (and so linea)
posshility by the rules

posg{ A)=posgB) O prob( A-B) = prob(B)
prob( A) = prob(B) O posq A-B) = posq B-A )

The ordinal asertions of either cdculus can thus be
medhanicdly trandated into ordinal assertions of the
other. Any ordina thought expressible in one cdculus
finds its corresponding expression in the other. If either
one is reasonable, then the other is, too, since both can
expressthe same underlying ordina thoughts, including
ead other’s, with equal fidelity.

It aso follows that the bald dredion to order
propositions acrding to their ‘credibility’ is too vague
to be of much use in discovering spedficdly
probabili stic ordinal principles. More helpful would be to
assgn some more spedfic task whose adievement is



informed by beliefs and depends on probabilistic
expresson of those beliefs.

One would not claim that performance of any spedfic
task is the sum and substance of rational belief tenure,
but one might hope that it would be eaier to judge
whether or not the assgned task has been done well than
to judge whether disputable notions of rationality have
been served. De Finetti’s (or others') gambling semantics
would be an example of assigning a spedfic task in
which  good performance cdls for probabilistic
resemblance

Consider the following task spedficaion. The subjed is
presented with some number s of pairs of propasitions.
The asdggnment is to seled one member of eech pair so
that as many of the s seleded propasitions as posshle
will be found true if and when all uncertainty is resolved,
that is, some one d@om is found true. If the subjed judges
the propasitions in any pair to be equally suitable for
adhieving that objedive, then either member may be
seleded, however the subjed pleases. The subjed is to
‘show his or her work’ so that we may distinguish
between seledions based on tiesand atherwise.

Suppcse that at least one non-tying seledion has been
made, and that the subjed assents to the interpretation
that he or she epeds that more of the s seleded
propositions will be found true than of the s propasitions
left out. In the cae of ties, if different choices were
made, then the subjed would see no advantage nor
disadvantage cmpared to the seledions adualy made.
If the subjed wishes to revise his or her seledions in
order to attain asent, then that isfine.

While many solutions to the task are equally defensible,
others may contain patterns of choice that would be
anomalous if they occurred. Suppose, for example, there
were a quasi-additivity violation: a O b = a O ¢ was
assrted, a (b being seleded, and ¢ > b was asserted and
¢ seleded. This sledion pattern is «lf-defeaing with
resped to the assgned goal.

If neither b nor ¢ were found true, then these dhoices
make no dfference to the number of corred seleded
propositions. Otherwise, if choosing ¢ over b contributes
to the adievement of the goal, then choosing a O b
instead of a O c detrads from it, and vice versa. The
subjed expeds that he or she muld have done the task
better. How the subjea would resolve the difficulty is of
no concern. What rubs is that there is sme room for
improvement.

The difficulty is not that the simultaneous assertion of
alb=alcandc>bviolates osme caon of rational
belief. Posshilists might so assert, and passhility
ordering is rational, even by probabilists' foundational
standards. The difficulty is that the subjed’s beliefs have
not successfully informed the adievement of the
asdgned task, a task involving a bona fide asped of
belief tenure, albeit not the only asped.

The relationship to Scott’s uninterpreted sufficiency
criterion isclea. If every atom occurs just as many times
among the s seleded propasitions as among the s rejected
ones, then the same number of rejeded propositions will
necessarily be found true as accepted propositions, if and
when the uncertainty is resolved. How many propasiti ons
will be found true will depend on which atom is found
true, but the number among the acceted and the rejeded
will be the same, whichever atom isfound true.

By the ealier suppcstion, the subjed assented
otherwise. The import of the situation is the same & for
the hypothetical quasi-additivity violation, as it must be,
since that violation consisted of both accepting and
rejeding one instance gieceof a, b, and c. No canon of
rational belief has been violated, but a bona fide asped of
beli ef tenure has been poarly managed.

For those who prefer a gambling story, suppase the task
were posed as s oppatunities to choose to be paid $1if
some propasition is found true, or else to be paid $1 if
some other propasition is found true. The god is to
construct the highest-paying portfolio of s propasitions
from the pairs. The Scott-style anomaly would consist in
judging that the acceted patfolio had strictly better
prospeds than the rejeded one, whil e bath portfoli os will
infact result inidentica pay-offs.

That is alessdramatic predicament than the usual Dutch
bodk. Nevertheless, it is a predicament al the same, and
yields an espedally simple gambling basis for ordina
subjedive probabilit y.

With or without gambling, the aguments of this sdion
share atheme with many other normative aguments for
probabili ty. Conflict arises between some goal for beli ef-
based aswrtions colledively, oppced by the logicd
imposgbility of the goal being redized without
probabili stic conformity. The schema involves what
might be described as testing the quality of belief against
circumstances outside the mind of the believer.

Such testing is legitimate, and important for redistic
application. Moreover, some role for atask more spedfic
than to “order propostions acording to judged
credibility” is inevitable. However, just as de Finetti’s
conjedure ladked the nettlesome auxiliary domain, so
aso did it rely solely on assumptions about plausibly felt
relationships among beliefs, rather than performance
failures. A repair fully in the spirit of the original
conjedure should dolikewise.

An offer of repair will be made which focuses on the
beli ever’ s reasoning when undertaking a task like that of
this s«dion, but does not turn on the assessment of the
result that the believer produces. First, though, a helpful
mathematicd fact will be introduced.



3 An Asped of Orderings

All transitive orderings of objeds impose apartial order
on the multisets of those objeds favored and disfavored
by ordering assertions. A multiset, also known as a bag,
alows an objed to appea more than once & an element,
but elements are not ordered within the bags.

Two bags are equa just when they contain the same
elements, each present the same number of times. The
size of abag is the number of elements it contains. It is
straightforward to “type cat” a bag into an associated set
of its distinct elements, or into a list which does impose
some internal order on the mntents of the bag.

Definition. For any finite transitively ordered damain of
objeds D, the object-matching partial order asserts, for
same-size bags A and B of objeds in D, that A > B just
when there is a bijedion f() from A to B in which for
eath element ain A, a = f( a) in the ordering of D, and
for some dement the ordering is grict, and asserts that
A =B just when thereis a bijedion f() from A to B where
foreahain A, a=f(a) intheorderingof D.

Proposition. For bags A and B of the @&ove definition, at
most one of A =B, A> B, or B > A holds for definitely
ordered dbjeds.

A sketch proof of the Propcsition appeas in the
Appendix. It is graightforward that the objed-matching
partial order is transitive, and that there is a binary
concaenation operation U & V which produces the bag
containing the dements of U and V, for whichA>B =
A& C=B&C.

4  Extending the Proposition-bag Partial
Order

Throughout this sedion, whenever any ordering of
propositions is discussd, the ordering will be complete,
definite, bounded, and transitive. The domain will be
finite.

When implementing the task of ordering propasitions
acording to their prospeds for being found true, the
believer visibly resorts to compensation, or “trade offs.”
That is, in comparing AOB withCOD (AB=CD =0),
one might assert that A OB > C OD when A > C but
B <D, evenwhen A<COD.

The believer evidently reasons, or would testify if asked,
that the alvantage of A compared to C overcomes the
advantage of D compared to B, lealing to the conclusion
that A0 B > C OD. Or, in other words, if D > B is a
“closer cdl” than A> C, thenthisleadsto A (0B having a
better overall prosped of being found true than C O D.
Analogous considerations would be salient when making
subjedive quadlitative estimates of uncontroversialy
additive quantities like distances, weights, or the
proportions of spedesin amixture. To be formal:

Definition. A contrast is an ordered pair of propasiti ons.

Asaumption 1. There is a transitive ordering among the
contrasts defined on the propasitions of the domain such
that for AB = CD =0, AOB = C 0D just when
(A, C)=(D,B).

Although we do not see& another testing-based
motivation, contrasts do have interpretations “outside the
mind.” For example, ( A, B ) can be interpreted as the
joint prosped of being paid $1if A is found true, and
being liable to pay $1 if B is found true (aternatively,
being paid $1 unless B is found true, if one wishes to
avoid losss). This, combined with the interpretation of
propositions as $1 pospeds, leals to gentle anomalies
like those of an ealier sedion if the assumed relationship
between contrasts and propasiti ons does not hold.

Assumption 1 implies quasi-additivity. If AC=BC =01,
andAOC=BUOC, thenwehave (A, B)=(C,C).
SinceC=C, (C,C)=(0,0), so by trangtivity,
(A, B)=(0,0),o0r AzB. The steps are reversible.
Assumption 1 is also strictly stronger than quasi-
additivity, since it excludes the Kraft, Pratt, and
Seidenberg counterexample, which quasi-additivity does
not:

alle>cOd O
allcOd>b0e O
bOc>ald O
d>alc O

(a,0)>(cOde)
(cOd,e)>(b,a)
(b,a)>(d,c)
(d,c)>(a0)
contrary to transitivity of the mntrasts.

Assumption 1 isaneaessary condition for the propasition
ordering to be probability agreeng. It can be redized by
subtradion of agredng probability values when they
exist.

From the results of the previous ®dion, if Assumption 1
is granted, then there necessarily exists atransitive partial
ordering of same-size bags of contrasts. The ordered
contrast-bags can help us to enrich the partial order of
propositi on-bags.

Notation. A bag of propasitions may be denoted as an
indexed propcsitional variable exclosed in square
bradets, as[ u; ]. A bag of contrasts may be denoted as a
contrast of indexed propositiona variables enclosed in
square bracets, as in [ ( u, vi ) ]. The device
[ (O,0), ...] denotes a bag of contrasts, al of whose
elementsare (O, O ), of whatever sizeis appropriate for
the mntext in which the device @peas. If some
relationship is asserted between a ontrast-bag C and
[ (O,0), ...], then the size of the bag denoted by the
deviceisthesizeof C.

Suppcse we ae presented with two same-sized
proposition-bags, Q and R. We ae aked a narrow
question: whether or not we see ay advantage of one



over the other regarding the number of propasitions that
would be found true, if and when our uncertainty is
resolved.

Of course, if there is ome pairing of the propasitions in
the bags that alows us to assert an objed-matching
ordering between bags, Q > R, R> Q, or Q = R, then we
would have our answer. Put another way, the question is
simple if there is me indexing scheme over the
propositions where the bag of contrasts between
corresponding propasitionsin Q and R, [ (g, 1) ], is
ordered by objed matching relative to the bag denoted by
[(0,0),..].

Suppocse there is no such pairing. The bags Q and R do
not participate in an objed-matching partial order.

Suppose further that there were two other propasition-
bags, Sand T, of the same size & Q and R, and for these
bags, there is an objed-matching order, S=T. There ae
aso matching schemata for the propasitions in each of
{QR}and{ ST} where[ (arn)]=[(s t)] in
the objed matching sense.

Given the role that contrasts play in credal judgments,
these drcumstances provide a defensible basis for
thinking that there may be no advantage between Q and
R, just as we think there is no advantage between S and
T. We might answer the narrow question about them in
the negative.

Now suppacse somewhat different circumstances obtain.
We notice the situation among Q, R, S, and T just
discussed, but we dso think that Q > R in the objed-
matching sense. That is, we find ourselves claiming an
advantage for Q over R, in the faceof a reason to think
that there is no such advantage. This dissonance would
be an excdlent justification for a re-examination of how
our felt beliefs ought to inform our answer to the
question asked.

To be formal:

Definition. If Assumption 1 holds, then a relation
between contrast-bags, denoted by ~, is asserted as
follows: [u] =[vi] O [(uw,v;)]~[(O,0),...], where
i is an index, arbitrarily attached to the propgsitions in
ead propasition-bag for notational discrimination, and
where the u; and v; are propgsitions, and for same-sized
contrast-bags X and Y, with “=" being the mntrast-
matching partial order's equal ranking,
X=Y~[(0O,0),..]impliesX~[(0O,0),..].

Asaumption 2. There is a transitive partial ordering of
same-size bags of propasitions, denoted by the relational
operators { >*, =* }, in which
[(u,vi)I~[(0,0) .10 [w]="[v], and for
proposition-bags X and Y, X > YO X>* Y.

As defined, the tilde relation distinguishes only two

caegories of contrast-bags. those that arise from equally
ranked propasition-bags (regardless of how the

propositions are paired to form the ontrasts), and
contrast-bags that are ranked equally with those of the
first category. It is easy to verify that in neither category
can contrast-bags be dtrictly ordered with resped to
[ (O,0), ..] under Assumption 1, since that would
imply a strict ordering between the Definition's [u] and
[vi], contrary to hypothesis and the Propcsition of
Sedion 3.

The motivation of Assumption 2 is to describe the
applicdion of esentidly the same trade-off reasoning
which deddes the order of two propcsitions to the
question of whether two patfolios might have differently
attradive prospeds for how many of their propasitions
might be found true. Spedficdly, the asumption
licenses an inference from the eistence of a tilde
relationship that the relevant propasition-bags are ranked
equally in a transitive partial ordering which extends the
objed-matching partial order.

The aumption al ows the believer to have and to defend
opinions about parity (or ladk of advantage) between
portfolios whose propasitions do not exhibit pairwise
equality. That is a respedable agnitive task in its own
right. One might have assumed even more on the same
intuition, but this much assumption is enough for the
purpose & hand.

Assumption 2 is a necessry condition for probabili ty
agreement. It can be redized by addition over the
agredng probabilities or their differences in a bag's
contents.

Theorem. A complete, definite, bounded, and transitive
ordering of propasitions has an agreeéng probability
density if Assumptions 1 and 2 hold.

A sketch proof of the Theorem appeasin the Appendix.

5 Conclusions

Although Scott made no normative daims for his
charaderizaion of the key sufficient condition for
probability agreement, it is nevertheless susceptible of
respedable normative interpretations, both with and
without a gambling element. Enriching de Finetti’s
ordinal insight with judgments about lesser or more
pronounced inequality (including provision for equality)
leads to ather kinds of arguments, perhaps closer in spirit
to de Finetti’s conception of the original conjedure.

Throughout the paper, results have been presented for
complete, definite orderings of propositions. Partial
orderings and indefinite orderings (i.e. where A > B
might be asserted, but neither A > B nor A = B) may
redisticdly portray some defensible states of belief. The
chief results here ae immediately adaptable for partially
and indefinitely ordered propositions, since these
orderings are weaker than complete definite ones. In
many contexts, it would be accetable smply to assume



outright that any ordering hes ome regulated definite
completion on the same domain.

Belief change and other aspeds of quditative conditional
probabiliti es were not discussed here. That is becaise
other authors have established that if probability
agreement for static or unconditional beliefs is aure,
then solid motivations for the rest can be built upon that
foundation. De Groot (1970) develops this theme for a
variety of statisticd applications, and gives pointers to
related work.
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Appendix

Sketch Proof of the Proposition (sedion 3). If two bags
are definitely ordered, then the items in the assciated
lists of elements srted descendingly (with ties broken
arbitrarily) are definitely ordered, i-th item paired with
i-th item, in the required senses, al = and some > for
strict bag order, al equa for equal bag order. There can
be only one suite of pairwise ordering assertions for the
two fixed lists, and so at most one definite order of the

bags.

Proof of the list ordering clam is by induction.
Obviously, the Propgsition is true for bags of one objedt
ead. Suppose it is true for sorted list of size m. Add to
these one more objed apiece high-object > low-object,
where the high-object is ranked j among its peas in one
list (the high list), and low-object is ranked k in the other
list (the low list). By cases:

If j =k, then the propasition holds.

If index j <index k: the j-th high element = the j+1st high
element > the j-th low element, and similarly through
index k-1. The k-th high element > the k-1st low element
> the k-th low element. Elements ranked before | or after
k, if any, are paired as among the m.

If j > k The k-th high element = the j-th high element >
the k-th low element; for indicesi from k+1 through j, the
i-th high element > the j-th high element = the k-th low
element > the i-th low element. Elements ranked before |
or after k, if any, are paired as among the m.

Similar considerations show that if there is any strict
inequality among the displacal elements (including the
new additions), then at least one strict inequality will
emerge, and if there is no such strict inequality, then
none will be introduced. //

Sketch Proof of the Theorem (sedion 4). Suppose X
and Y are proposition-bags of the same size m, X >,
and among the propasitions, eat atom appeas the same
number of times in both bags. Each bag has n atoms
present in al. Let Q be the bag containing n-m O’s. Let
A be abag whose dements are n atomic propasitions, in
which ead atom appeas the same number of times as it
doesin Xand in Y. By concaenation, X& Q>Y & Q, s0
X& Q>*Y& Q. If Assumptions 1 and 2 hold, however,
X&Q=*A=*Y& Q,s0X& Q=*Y& Q.

The method d demonstrating the equal ranking with A
iterates the processillustrated here for one propasition of
three @aoms, a [0 b O ¢, which is placal in a bag along
withtwo 's, and it is shown that that bag =* [ a, b, ¢ ],
the bag of a Ob [ c's constituent atoms.

[(aObOca) (0O, bOc) (O0,0)]=
[(bOc, O),(0O,b0Oc), (0O,0)] by element
matching, since a O b Oc =a 0Ob O c implies

a
(alb0Oca)=(b0Oc, O) by Assumption 1. From

[ b Oc O, 0717 =17Db 0Ow¢ 0O 0O1
[(bOc,0),(0,b0Oc),(O0,0)]~[(0,0),...]1, by
definition of tilde, and also

[(aObOc,a),(0,bdc),(O,O0)]~[(O,0),..],
so by Assumption 2, [ a O b Oc¢ O, 0] =*
[abOc O].

Similarly, we have [ (&, a), (bOc, b), (O,c) ] =
[(aa) (cO)(0c)l~[(0,0) ..]
[ bOc O] =1]a b, c] By transtivity,
[a0b0Oc,O,0]=*[ab,c].



The procedure dealy generaizes to digunctions of any
finite length, and can be performed on bags of
propositions of any finite size X & Qand Y & Q lead to
the same dl-atomic bag A, since they have the same

population of aoms. So, any violation of the key
sufficient condition identified by Kraft, Pratt, and
Seidenberg and Scott corresponds to a defea of the
Assumptions. 1l



