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Abstract

Normative study of probabilit y-agreeing orderings of
propositions, much of it rooted in a false but evocative
conjecture of Bruno de Finetti, has typically sought to
abstract credal rationali ty claims famili arly made for
numerical probabiliti es. It is now known that some
probabili ty-disagreeing orderings, e.g. possibili stic order,
syntacticall y restate probabilit y-agreeing orderings, and
so share in any ordinal probabili stic ‘ rationali ty.’ This
paper explores what remains normatively  distinctive
about subjective probabilit y agreement. A multiset partial
ordering, characteristic of all transitive elementary
orderings, helps provide succinct, apprehensible
necessary and sufficient ordinal conditions for
probabili ty agreement.

Keywords. Qualitative probabili ty, transitivity,
de Finetti’s conjecture, Scott’s theorem.

1   Introduction

Bruno de Finetti (1935) developed a semantics and
normative motivation for numerical subjective
probabili ty based upon orderings of propositions
according to personal judgments about their relative
credibili ty. Prominent in his account was a property often
called quasi-additivity,

For propositions A, B, and C, where A is exclusive of
C and B is exclusive of C: A is no less credible than
B just when A ∨ C is no less credible that B ∨ C.

Other properties used by de Finetti were transitivity, and
what will be called here boundedness, that a tautology is
more credible than an uncertain proposition and a
contradiction is less credible than an uncertain
proposition. De Finetti also assumed that credibili ty
orderings were complete and definite, i.e. for any
propositions A and B, A > B, B >A, or else A = B.

From these assumptions, de Finetti derived a specific
numerical probabili ty for an initial set of propositions,
provided that unboundedly many auxiliary propositions,

judged to be equally likely, were available to compare
with the original domain. Later authors suggested that a
suitable auxili ary domain might be achieved by
imaginary coin tosses (Savage, 1972), or by the outright
assumption of a uniform-probabili ty real-valued random
variable (De Groot, 1970).

De Finetti, however, subscribed to a rigorously
subjective, personalist probabili sm. He doubted the
cogency of “objective” probabili ty notions (1949). He
would have been reluctant to introduce into his argument
any figments like those suggested by the later authors.
Except to insist on their subjectivity, De Finetti had been
vague about the  source of his auxiliary propositions.

Eventually, de Finetti put aside his ordinal-based project
in favor of an influential gambling semantics for
numerical subjective probabilit y. Matters might have
rested there but for a challenge pointedly posed by
de Finetti’s friend, George Polya (1949), who held that
numbers should play little role in belief modeling.

In reply to Polya, de Finetti (1949) revived his ordinal
studies, attempting to motivate a non-numerical
subjective qualitative probabili ty. The reply paper’s
propositional domain is finite, the 2n distinct disjunctive
propositions that can be composed from n mutually
exclusive atomic propositions. The auxili ary domain of
earlier ordinal work, whose only intended purpose had
been to extend order into specific numbers, was absent in
1949.

De Finetti treated ordinal assertions as simultaneous
linear inequali ty constraints. For example, the assertion
a ∨ b > c becomes the constraint p( a ) + p( b ) > p( c ).
Such linear systems had earlier been the vehicle by
which de Finetti had developed his gambling semantics.

De Finetti conjectured that quasi-additivity, transitivity,
and boundedness sufficed for a finite complete and
definite ordering to be probabilit y agreeing. Probabilit y
agreement occurs when there exists some probabilit y
distribution p() on the propositions in an ordering, such
that A ≥ B in the ordering just when p( A ) ≥ p( B ).



De Finetti’ s conjecture is false. Kraft, Pratt, and
Seidenberg (1959) constructed a quasi-additive,
transitive, bounded, and definite ordering of the 32
propositions built on five atoms which included the
assertions:

a ∨ c ∨ d > b ∨ e a ∨ e > c ∨ d

b ∨ c > a ∨ d d > a ∨ c

There is no agreeing probabilit y. Summing the
inequalities above yields the assertion that the quantity
2p(a)+p(b)+2p(c)+2p(d)+p(e) is strictly greater than
itself, a contradiction among the constraints.

Kraft, et al. also showed that a finite variation upon
de Finetti’s auxili ary domain method, along with the
conjecture’s assumptions, suff iced for demonstrating the
existence of an agreeing probabilit y. The authors framed
their argument to avoid comparisons between the original
and the auxiliary events, and between conjunctions
involving different original events (e.g. “heads-and-A”
might be compared to “ tails-and-A” but not to “heads-
and-B” ).

These is reason to doubt whether this repair strategy, or
any strategy featuring an auxiliary domain, achieved
de Finetti’s goals in 1949 for a transparently subjective
foundation of qualitative probabilit y. Recourse to coins,
suggested by the Kraft group, would fall especially short
of de Finetti’ s plausible goals.

Moreover, de Finetti had been aware that introducing an
auxiliary domain could rescue his conjecture if the need
arose (1949). He did not pursue the possibil ity. It seems
likely that part of the beauty of the conjecture for
de Finetti was the absence of any auxili ary domain
congruent to the outcomes of some gambling apparatus,
so avoiding that blemish upon subjectivist motivations
which Cox (1946) criticized as “ toolmarks” betraying an
origin in frequentist intuition.

In any case, it follows immediately from Kraft, Pratt, and
Seidenberg’s results that:

Scott’ s Theorem (1964). Any finite system of
simultaneous linear inequalities on a bounded domain, all
of whose non-zero coeff icients are one (as ordered
disjunctions engender), has a solution unless there is
some finite combination of constraints of the same weak
sense where at least one inequali ty is strict, such that
each of the atoms appears the same number of times on
each side of the inequaliti es in the combination.

Scott obtained this ‘uninterpreted’ version of the key
sufficient condition for probabilit y agreement by distinct
means, deferring to Kraft, Pratt, and Seidenberg’s
priority in the essence. Scott’s theorem is described as
‘uninterpreted’ in that he declined to provide any
normative argument to explain why one would ever want
to count the number of times each atom appeared on each
side of a system of inequali ties. Although Scott did not

provide such an argument, there nevertheless are suitable
arguments he might have made, as will be discussed in
the next section.

In the decades since then, many other authors have built
on Kraft, et al. and Scott, seeking other sufficient
conditions (often relaxing necessity) for probabili ty
agreement, along with answers to related questions, such
as sufficient conditions for agreement with exactly one
density. Fishburn (1996) includes a survey of, and
pointers into, the breadth of this work.

What is sought in the present paper are necessary and
sufficient conditions for finite probabilit y agreement, of
both qualitative and unambiguously subjective character,
whose interpretation in the context of belief modeling
should motivate what an additive measure might have to
do with the relationships among ordered beliefs.

2   The Task Perspective

In fact, de Finetti and many of those who came after him
clearly wished for something more. There was hope that
there might be necessary and sufficient conditions for
probabili ty agreement that were also necessary for the
achievement of rationali ty, however that estate might be
defined.

It is now known that there are no such ordinal conditions.
The propositional orderings of a linear possibili ty
syntacticall y restate the ordering assertions of some
probabili ty densities which agree with the possibili ty on
the order of the atoms (Snow, 2001). Possibili ty orders
disjunctions according to the maximum value among
their disjoined atoms; ∅ has a value of zero. In a linear
possibili ty, all atomic values are distinct. Except for the
Boolean distribution (exactly one non-zero atomic
value), possibil ity is not probabili ty agreeing.

The probabilit y density whose atomic values’ numerators
are successive powers of two (for instance, with 5
uncertain atoms, values of 1/31, 2/31. 4/31, 8/31, and
16/31) relates to the atomically agreeing (and so linear)
possibili ty by the rules

poss( A ) ≥ poss( B ) ⇒ prob( A¬B ) ≥ prob( B )

prob( A ) ≥ prob( B ) ⇒ poss( A¬B ) ≥ poss( B¬A )

The ordinal assertions of either calculus can thus be
mechanicall y translated into ordinal assertions of the
other. Any ordinal thought expressible in one calculus
finds its corresponding expression in the other. If either
one is reasonable, then the other is, too, since both can
express the same underlying ordinal thoughts, including
each other’s, with equal fidelity.

It also follows that the bald direction to order
propositions according to their ‘credibili ty’ is too vague
to be of much use in discovering specifically
probabili stic ordinal principles. More helpful would be to
assign some more specific task whose achievement is



informed by beliefs and depends on probabili stic
expression of those beliefs.

One would not claim that performance of any specific
task is the sum and substance of rational belief tenure,
but one might hope that it would be easier to judge
whether or not the assigned task has been done well than
to judge whether disputable notions of rationality have
been served. De Finetti’s (or others’ ) gambling semantics
would be an example of assigning a specific task in
which good performance calls for probabili stic
resemblance.

Consider the following task specification. The subject is
presented with some number s of pairs of propositions.
The assignment is to select one member of each pair so
that as many of the s selected propositions as possible
will be found true if and when all uncertainty is resolved,
that is, some one atom is found true. If the subject judges
the propositions in any pair to be equally suitable for
achieving that objective, then either member may be
selected, however the subject pleases. The subject is to
‘show his or her work’ so that we may distinguish
between selections based on ties and otherwise.

Suppose that at least one non-tying selection has been
made, and that the subject assents to the interpretation
that he or she expects that more of the s selected
propositions will be found true than of the s propositions
left out. In the case of ties, if different choices were
made, then the subject would see no advantage nor
disadvantage compared to the selections actually made.
If the subject wishes to revise his or her selections in
order to attain assent, then that is fine.

While many solutions to the task are equally defensible,
others may contain patterns of choice that would be
anomalous if they occurred. Suppose, for example, there
were a quasi-additivity violation: a ∨ b = a ∨ c was
asserted, a ∨ b being selected, and c > b was asserted and
c selected. This selection pattern is self-defeating with
respect to the assigned goal.

If neither b nor c were found true, then these choices
make no difference to the number of correct selected
propositions. Otherwise, if choosing c over b contributes
to the achievement of the goal, then choosing a ∨ b
instead of a ∨ c detracts from it, and vice versa. The
subject expects that he or she could have done the task
better. How the subject would resolve the difficulty is of
no concern. What rubs is that there is some room for
improvement.

The diff iculty is not that the simultaneous assertion of
a ∨ b = a ∨ c and c > b violates some canon of rational
belief. Possibili sts might so assert, and possibili ty
ordering is rational, even by probabili sts’ f oundational
standards. The diff iculty is that the subject’s beliefs have
not successfully informed the achievement of the
assigned task, a task involving a bona fide aspect of
belief tenure, albeit not the only aspect.

The relationship to Scott’s uninterpreted sufficiency
criterion is clear. If every atom occurs just as many times
among the s selected propositions as among the s rejected
ones, then the same number of rejected propositions will
necessarily be found true as accepted propositions, if and
when the uncertainty is resolved. How many propositions
will be found true will depend on which atom is found
true, but the number among the accepted and the rejected
will be the same, whichever atom is found true.

By the earlier supposition, the subject assented
otherwise. The import of the situation is the same as for
the hypothetical quasi-additivity violation, as it must be,
since that violation consisted of both accepting and
rejecting one instance apiece of a, b, and c. No canon of
rational belief has been violated, but a bona fide aspect of
belief tenure has been poorly managed.

For those who prefer a gambling story, suppose the task
were posed as s opportunities to choose to be paid $1 if
some proposition is found true, or else to be paid $1 if
some other proposition is found true. The goal is to
construct the highest-paying portfolio of s propositions
from the pairs. The Scott-style anomaly would consist in
judging that the accepted portfolio had strictly better
prospects than the rejected one, while both portfolios will
in fact result in identical pay-offs.

That is a less dramatic predicament than the usual Dutch
book. Nevertheless, it is a predicament all the same, and
yields an especially simple gambling basis for ordinal
subjective probabilit y.

With or without gambling, the arguments of this section
share a theme with many other normative arguments for
probabili ty. Conflict arises between some goal for belief-
based assertions collectively, opposed by the logical
impossibil ity of the goal being realized without
probabili stic conformity. The schema involves what
might be described as testing the quality of belief against
circumstances outside the mind of the believer.

Such testing is legitimate, and important for realistic
application. Moreover, some role for a task more specific
than to “order propositions according to judged
credibili ty” is inevitable. However, just as de Finetti’s
conjecture lacked the nettlesome auxili ary domain, so
also did it rely solely on assumptions about plausibly felt
relationships among beliefs, rather than performance
failures. A repair fully in the spirit of the original
conjecture should do likewise.

An offer of repair will be made which focuses on the
believer’s reasoning when undertaking a task like that of
this section, but does not turn on the assessment of the
result that the believer produces. First, though, a helpful
mathematical fact will be introduced.



3   An Aspect of Orderings

All transitive orderings of objects impose a partial order
on the multisets of those objects favored and disfavored
by ordering assertions. A multiset, also known as a bag,
allows an object to appear more than once as an element,
but elements are not ordered within the bags.

Two bags are equal just when they contain the same
elements, each present the same number of times. The
size of a bag is the number of elements it contains. It is
straightforward to “ type cast” a bag into an associated set
of its distinct elements, or into a list which does impose
some internal order on the contents of the bag.

Definition. For any finite transitively ordered domain of
objects D, the object-matching partial order asserts, for
same-size bags A and B of objects in D, that A > B just
when there is a bijection f() from A to B in which for
each element a in A, a ≥ f( a ) in the ordering of D, and
for some element the ordering is strict, and asserts that
A = B just when there is a bijection f() from A to B where
for each a in A, a = f( a ) in the ordering of D.

Proposition. For bags A and B of the above definition, at
most one of A = B, A > B, or B > A holds for definitely
ordered objects.

A sketch proof of the Proposition appears in the
Appendix. It is straightforward that the object-matching
partial order is transitive, and that there is a binary
concatenation operation U & V which produces the bag
containing the elements of U and V, for which A ≥ B ⇔
A & C ≥ B & C.

4   Extending the Proposition-bag Par tial
        Order

Throughout this section, whenever any ordering of
propositions is discussed, the ordering will be complete,
definite, bounded, and transitive. The domain will be
finite.

When implementing the task of ordering propositions
according to their prospects for being found true, the
believer visibly resorts to compensation, or “ trade offs.”
That is, in comparing A ∨ B with C ∨ D (AB = CD = ∅),
one might assert that A ∨ B > C ∨ D when A > C but
B < D, even when A < C ∨ D.

The believer evidently reasons, or would testify if asked,
that the advantage of A compared to C overcomes the
advantage of D compared to B, leading to the conclusion
that A ∨ B > C ∨ D. Or, in other words, if D > B is a
“closer call ” than A > C, then this leads to A ∨ B having a
better overall prospect of being found true than C ∨ D.
Analogous considerations would be salient when making
subjective qualitative estimates of uncontroversially
additive quantities like distances, weights, or the
proportions of species in a mixture. To be formal:

Definition. A contrast is an ordered pair of propositions.

Assumption 1. There is a transitive ordering among the
contrasts defined on the propositions of the domain such
that for AB = CD = ∅, A ∨ B ≥ C ∨ D just when
( A, C ) ≥ ( D, B ).

Although we do not seek another testing-based
motivation, contrasts do have interpretations “outside the
mind.” For example, ( A, B ) can be interpreted as the
joint prospect of being paid $1 if A is found true, and
being liable to pay $1 if B is found true (alternatively,
being paid $1 unless B is found true, if one wishes to
avoid losses). This, combined with the interpretation of
propositions as $1 prospects, leads to gentle anomalies
like those of an earlier section if the assumed relationship
between contrasts and propositions does not hold.

Assumption 1 implies quasi-additivity. If AC = BC = ∅,
and A ∨ C ≥ B ∨ C, then we have  ( A, B ) ≥ ( C, C ).
Since C = C, ( C, C ) = ( ∅, ∅ ), so by transitivity,
( A, B ) ≥ ( ∅, ∅ ), or A ≥ B. The steps are reversible.
Assumption 1 is also strictly stronger than quasi-
additivity, since it excludes the Kraft, Pratt, and
Seidenberg counterexample, which quasi-additivity does
not:

a ∨ e > c ∨ d        ⇒    ( a, ∅∅ ) > ( c ∨ d, e )

a ∨ c ∨ d > b ∨ e  ⇒    ( c ∨ d, e ) > ( b, a )

b ∨ c > a ∨ d         ⇒    ( b, a ) > ( d, c )

d > a ∨ c               ⇒    ( d, c ) > ( a, ∅∅ )

contrary to transitivity of the contrasts.

Assumption 1 is a necessary condition for the proposition
ordering to be probabilit y agreeing. It can be realized by
subtraction of agreeing probabili ty values when they
exist.

From the results of the previous section, if Assumption 1
is granted, then there necessarily exists a transitive partial
ordering of same-size bags of contrasts. The ordered
contrast-bags can help us to enrich the partial order of
proposition-bags.

Notation. A bag of propositions may be denoted as an
indexed propositional variable enclosed in square
brackets, as [ ui ]. A bag of contrasts may be denoted as a
contrast of indexed propositional variables enclosed in
square brackets, as in [ ( ui, vi ) ]. The device
[ ( ∅, ∅ ), ... ] denotes a bag of contrasts, all of whose
elements are ( ∅, ∅ ), of whatever size is appropriate for
the context in which the device appears. If some
relationship is asserted between a contrast-bag C and
[ ( ∅, ∅ ), ... ], then the size of the bag denoted by the
device is the size of C.

Suppose we are presented with two same-sized
proposition-bags, Q and R. We are asked a narrow
question: whether or not we see any advantage of one



over the other regarding the number of propositions that
would be found true, if and when our uncertainty is
resolved.

Of course, if there is some pairing of the propositions in
the bags that allows us to assert an object-matching
ordering between bags, Q > R, R > Q, or Q = R, then we
would have our answer. Put another way, the question is
simple if there is some indexing scheme over the
propositions where the bag of contrasts between
corresponding propositions in Q and R, [ ( qj, rj ) ], is
ordered by object matching relative to the bag denoted by
[ ( ∅, ∅ ), ... ].

Suppose there is no such pairing. The bags Q and R do
not participate in an object-matching partial order.

Suppose further that there were two other proposition-
bags, S and T, of the same size as Q and R, and for these
bags, there is an object-matching order, S = T. There are
also matching schemata for the propositions in each of
{ Q, R } and { S, T } where [ ( qk, rk ) ] = [ ( si, ti ) ], in
the object matching sense.

Given the role that contrasts play in credal judgments,
these circumstances provide a defensible basis for
thinking that there may be no advantage between Q and
R, just as we think there is no advantage between S and
T. We might answer the narrow question about them in
the negative.

Now suppose somewhat different circumstances obtain.
We notice the situation among Q, R, S, and T just
discussed, but we also think that Q > R in the object-
matching sense. That is, we find ourselves claiming an
advantage for Q over R, in the face of a reason to think
that there is no such advantage. This dissonance would
be an excellent justification for a re-examination of how
our felt beliefs ought to inform our answer to the
question asked.

To be formal:

Definition. If Assumption 1 holds, then a relation
between contrast-bags, denoted by ~, is asserted as
follows: [ui] = [vi] ⇒ [ ( ui, vi ) ] ~ [ ( ∅, ∅ ), ... ], where
i is an index, arbitrarily attached to the propositions in
each proposition-bag for notational discrimination, and
where the ui and vi are propositions, and for same-sized
contrast-bags X and Y, with “=” being the contrast-
matching partial order’s equal ranking,
X = Y ~ [ ( ∅, ∅ ), ... ] implies X ~ [ ( ∅, ∅ ), ... ].

Assumption 2. There is a transitive partial ordering of
same-size bags of propositions, denoted by the relational
operators { >*, =* } , in which
[ ( ui, vi ) ] ~ [ ( ∅, ∅ ), ... ] ⇒ [ ui ] =* [ vi ], and for
proposition-bags X and Y, X  > Y ⇒ X >* Y.

As defined, the tilde relation distinguishes only two
categories of contrast-bags: those that arise from equally
ranked proposition-bags (regardless of how the

propositions are paired to form the contrasts), and
contrast-bags that are ranked equally with those of the
first category. It is easy to verify that in neither category
can contrast-bags be strictly ordered with respect to
[ ( ∅, ∅ ), ... ] under Assumption 1, since that would
imply a strict ordering between the Definition’s [ui] and
[vi], contrary to hypothesis and the Proposition of
Section 3.

The motivation of Assumption 2 is to describe the
application of essentially the same trade-off reasoning
which decides the order of two propositions to the
question of whether two portfolios might have differently
attractive prospects for how many of their propositions
might be found true. Specificall y, the assumption
licenses an inference from the existence of a tilde
relationship that the relevant proposition-bags are ranked
equally in a transitive partial ordering which extends the
object-matching partial order.

The assumption allows the believer to have and to defend
opinions about parity (or lack of advantage) between
portfolios whose propositions do not exhibit pairwise
equali ty. That is a respectable cognitive task in its own
right. One might have assumed even more on the same
intuition, but this much assumption is enough for the
purpose at hand.

Assumption 2 is a necessary condition for probabili ty
agreement. It can be realized by addition over the
agreeing probabiliti es or their differences in a bag’s
contents.

Theorem. A complete, definite, bounded, and transitive
ordering of propositions has an agreeing probabilit y
density if Assumptions 1 and 2 hold.

A sketch proof of the Theorem appears in the Appendix.

5   Conclusions

Although Scott made no normative claims for his
characterization of the key sufficient condition for
probabili ty agreement, it is nevertheless susceptible of
respectable normative interpretations, both with and
without a gambling element. Enriching de Finetti’s
ordinal insight with judgments about lesser or more
pronounced inequali ty (including provision for equali ty)
leads to other kinds of arguments, perhaps closer in spirit
to de Finetti’s conception of the original conjecture.

Throughout the paper, results have been presented for
complete, definite orderings of propositions. Partial
orderings and indefinite orderings (i.e. where A ≥ B
might be asserted, but neither A > B nor A = B) may
realistically portray some defensible states of belief. The
chief results here are immediately adaptable for partially
and indefinitely ordered propositions, since these
orderings are weaker than complete definite ones. In
many contexts, it would be acceptable simply to assume



outright that any ordering has some regulated definite
completion on the same domain.

Belief change and other aspects of qualitative conditional
probabiliti es were not discussed here. That is because
other authors have established that if probabili ty
agreement for static or unconditional beliefs is secure,
then solid motivations for the rest can be built upon that
foundation. De Groot (1970) develops this theme for a
variety of statistical applications, and gives pointers to
related work.
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Appendix

Sketch Proof of the Proposition (section 3). If two bags
are definitely ordered, then the items in the associated
lists of elements sorted descendingly (with ties broken
arbitrarily) are definitely ordered, i-th item paired with
i-th item, in the required senses, all ≥ and some > for
strict bag order, all equal for equal bag order. There can
be only one suite of pairwise ordering assertions for the
two fixed lists, and so at most one definite order of the
bags.

Proof of the list ordering claim is by induction.
Obviously, the Proposition is true for bags of one object
each. Suppose it is true for sorted list of size m. Add to
these one more object apiece, high-object ≥ low-object,
where the high-object is ranked j among its peers in one
list (the high li st), and low-object is ranked k in the other
list (the low li st). By cases:

If j = k, then the proposition holds.

If index j < index k: the j-th high element ≥ the j+1st high
element ≥ the j-th low element, and similarly through
index k-1. The k-th high element ≥ the k-1st low element
≥ the k-th low element. Elements ranked before j or after
k, if any, are paired as among the m.

If j > k: The k-th high element ≥ the j-th high element ≥
the k-th low element; for indices i from k+1 through j, the
i-th high element ≥ the j-th high element ≥ the k-th low
element ≥ the i-th low element. Elements ranked before j
or after k, if any, are paired as among the m.

Similar considerations show that if there is any strict
inequality among the displaced elements (including the
new additions), then at least one strict inequality will
emerge, and if there is no such strict inequali ty, then
none will be introduced. //

Sketch Proof of the Theorem (section 4). Suppose X
and Y are proposition-bags of the same size, m, X > Y,
and among the propositions, each atom appears the same
number of times in both bags. Each bag has n atoms
present in all . Let Q be the bag containing n-m ∅’s. Let
A be a bag whose elements are n atomic propositions, in
which each atom appears the same number of times as it
does in X and in Y. By concatenation, X & Q > Y & Q, so
X & Q >* Y & Q. If Assumptions 1 and 2 hold, however,
X & Q =* A =* Y & Q, so X & Q =* Y & Q.

The method of demonstrating the equal ranking with A
iterates the process il lustrated here for one proposition of
three atoms, a ∨ b ∨ c, which is placed in a bag along
with two ∅’s, and it is shown that that bag =* [ a, b, c ],
the bag of a ∨ b ∨ c’s constituent atoms.

[ ( a ∨ b ∨ c, a ), ( ∅, b ∨ c ), ( ∅, ∅ ) ] =
[ ( b ∨ c, ∅ ), ( ∅, b ∨ c ), ( ∅, ∅ ) ] by element
matching, since a ∨ b ∨ c = a ∨ b ∨ c implies
( a ∨ b ∨ c, a ) = ( b ∨ c, ∅ ) by Assumption 1. From
[ b ∨ c, ∅, ∅ ] = [ b ∨ c, ∅, ∅ ],
[ ( b ∨ c, ∅ ), ( ∅, b ∨ c ), ( ∅, ∅ ) ] ~ [ ( ∅, ∅ ), ... ], by
definition of tilde, and also
[ ( a ∨ b ∨ c, a ), ( ∅, b ∨ c ), ( ∅, ∅ ) ] ~ [ ( ∅, ∅ ), ... ],
so by Assumption 2, [ a ∨ b ∨ c, ∅, ∅ ] =*
[ a, b ∨ c, ∅ ].

Similarly, we have [ ( a, a ), ( b ∨ c, b ), ( ∅, c ) ] =
[ ( a, a ), ( c, ∅ ), ( ∅, c ) ] ~ [ ( ∅, ∅ ), ... ], so
[ a, b ∨ c, ∅ ] =* [ a, b, c ]. By transitivity,
[ a ∨ b ∨ c, ∅, ∅ ] =* [ a, b, c ].



The procedure clearly generalizes to disjunctions of any
finite length, and can be performed on bags of
propositions of any finite size. X & Q and Y & Q lead to
the same all-atomic bag A, since they have the same

population of atoms. So, any violation of the key
sufficient condition identified by Kraft, Pratt, and
Seidenberg and Scott corresponds to a defeat of the
Assumptions. //


