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Abstract

We study the recently discovered phenomenon
[1] of existence of comparative probability or-
derings on finite sets that violate Fishburn hy-
pothesis [2, 3] — we call such orderings and
the discrete cones associated with them ex-
tremal. Conder and Slinko constructed an
extremal discrete cone on the set of n = 7
elements and showed that no extremal cones
exist on the set of n ≤ 6 elements. In this
paper we construct an extremal cone on a fi-
nite set of prime cardinality p if p satisfies
a certain number theoretical condition. This
condition has been computationally checked
to hold for 1,725 of the 1,842 primes between
132 and 16,000, hence for all these primes ex-
tremal cones exist.
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1 Introduction

A comparative probability ordering on a finite
set X of cardinality n is an order (any reflex-
ive, complete and transitive binary relation)
on the power set 2X satisfying the following
de Finetti’s axiom [4]: for any A, B, C ⊆ X

A � B ⇐⇒ A ∪ C � B ∪ C

whenever (A ∪B) ∩ C = ∅.

The set X is normally assumed to be
{1, 2, . . . , n}.

Comparative probability orderings are nor-
mally studied in terms of combinatorial ob-
jects associated with them called discrete
cones [1, 2, 3]. We may represent a sub-
set A ⊆ X by an n-dimensional character-
istic vector vA whose ith coordinate is 1 if
i ∈ A and 0 otherwise. Likewise the compar-
ison A � B can be represented by the vec-
tor vA−vB whose coordinates will now lie in
the set T = {−1, 0, 1}. In this way we may
think of comparative probability orderings as
subsets of T n by converting all comparisons
to vectors, with de Finetti’s axiom ensuring
that this correspondence is well defined. The
resulting objects, called discrete cones, proved
to be a convenient tool for the study of com-
parative probability orderings.

Definition 1. A subset C of T n is a discrete
cone if the following hold:

(i) if x ∈ C and y ∈ C then x + y ∈ C
provided x + y ∈ T n;

(ii) for x ∈ T n, either x ∈ C or −x ∈ C (not
both for x 6= 0);

(iii) {e1 − e2, . . . , en−1 − en, en} ⊆ C, where
{e1, . . . , en} is the standard basis of Rn.

We define a discrete cone to be almost rep-
resentable if there is a vector n with strictly
positive, distinct entries such that x ∈ C =⇒



x · n ≥ 0, and representable if, in addition,
x · n = 0 ⇐⇒ x = 0. These two conditions
correspond to the existence of a probability
measure on X which almost agree or (respec-
tively) agree with the comparative probability
ordering to which the cone corresponds [5].

A central problem in the study of compar-
ative probability orderings is deciding what
conditions are required to ensure that such
an ordering is representable. Conditions
which are known to be necessary and suffi-
cient are the so-called cancellation conditions
C1, . . . , Ck, . . . , developed by Kraft, Pratt and
Siedenberg [5]. A discrete cone C (and
the corresponding comparative probability or-
dering) satisfies the mth cancellation condi-
tion Cm if there are no m non-zero vectors
x1, . . .xm ∈ C and positive integers a1, . . . am

such that
m∑

i=1

aixi = 0.

It is clear that any representable cone satisfies
all cancellation conditions.

As conditions C1, C2, C3 are satisfied by any
comparative probability ordering [2], Fish-
burn [2, 3] defined a function f(n) as the
smallest number k such that the cancellation
conditions C4, . . . , Ck ensure that a proba-
bility ordering on a n element set is repre-
sentable. Conder and Slinko [1] introduced
a similar function g(n) which is the smallest
number k such that the cancellation condi-
tions C4, . . . , Ck ensure that an almost rep-
resentable order is representable. It is clear
that g(n) ≤ f(n) and it is easy to show that
f(n) ≤ n + 1 and g(n) ≤ n. Fishburn proved
that f(5) = 4 and f(n) ≥ n − 1. He con-
jectured that f(n) = n − 1 for all n ≥ 5.
Conder and Slinko [1] confirmed for n = 6
that f(6) = g(6) = 5, but also they disproved
the hypothesis for n = 7 by showing that
f(7) ≥ g(7) = 7.

Definition 2. We will call a discrete cone C
in T n (and the respective comparative proba-

bility ordering) extremal if C satisfies the can-
cellation conditions C1, . . . , Cn−1 but is not
representable.

Thus we may say that Conder and Slinko
constructed the first extremal almost repre-
sentable cone in T 7. The goal of this article is
to prove f(n) ≥ g(n) = n, when n is a prime
satisfying a certain condition. More exactly,
we prove

Theorem 1. Let p be a prime greater than
131. If(

1 +

√(
−1

p

)
p

)p

− 1 = a + b

√(
−1

p

)
p,

(1)
where gcd(a, b) = p, then there exists an ex-
tremal almost representable discrete cone in
T p and, in particular, g(p) = p.

Here, (−1
p

) denotes the Legendre quadratic

residue symbol ( i
p
), for i = 0, 1, 2, . . . , p − 1,

where for convenience we take (0
p
) to be 0.

The odd primes satisfying (1) we will call opti-
mus primes. The first few non-optimus primes
are

3, 23, 31, 137, 191, 239, 277, 359, . . . .

Our calculations show that 1725 of the 1842
primes between 132 and 16000 are optimus
primes and Theorem 1 is true for them. At
this point, however, we know nothing about
the general distribution of such primes, or
even if there are an infinite number of them.

2 The Discrete Cones and
Matrices

The idea behind all constructions of almost
representable but not representable cones is
as follows. We choose a probability measure
p = (p1, . . . , pn) on [n] with all pi positive and
distinct, such that the corresponding ordering
of subsets in P [n] is not strict, and some sub-
sets are tied, having equal probabilities. Then



we break ties in a coordinated way, and with
some luck we may get a comparative proba-
bility ordering which is not representable. In
the language of cones, a tie means having a
pair of vectors ±x in the cone, and breaking
it means throwing one of them away.

Example 1. The non-representable compar-
ative probability ordering � on P [5] con-
structed in [5] does not satisfy the condition
C4, since it contains the following compar-
isons:

{1, 3} � {2, 4, 5}, {2, 4} � {1, 5},
{2, 5} � {3, 4}, {4, 5} � {2}. (2)

These are contradictory, which is reflected in
the relation x1 + x2 + x3 + x4 = 0 for their
respective vectors

x1 = (1,−1, 1,−1,−1)T ,

x2 = (−1, 1, 0, 1,−1)T ,

x3 = (0, 1,−1,−1, 1)T ,

x4 = (0,−1, 0, 1, 1)T .

This can be obtained from a representable
but nonstrict comparative probability ordering
with the measure p = 1

24
(8, 7, 4, 3, 2) for which

all pairs in (2) are tied.

Conder and Slinko [1] clarified the conditions
under which such a construction would work.
Interchanging rows and columns in their the-
orem, we have the following:

Theorem 2 (Conder-Slinko, [1]). Let
X = {x1, . . . ,xm}, m ≥ 4, be a sys-
tem of non-zero vectors from T n, such that∑m

i=1 aixi = 0 for some positive integers
a1, . . . , am, and such that no proper subsys-
tem X ′ ⊂ X is linearly dependent with pos-
itive coefficients. Suppose further that the
n×m matrix U having the vectors x1, . . . ,xm

as its columns has the property that pU = 0
for some positive integer-valued vector p =
(p1, . . . , pn) with p1 > p2 > . . . > pn > 0, with∑n

i=1 pi = 1, and that

span{x1, . . . ,xm} ∩ T n = {±x1, . . . ,±xm,0}.
(3)

Let C(�) be the discrete cone belonging to the
weak comparative probability ordering which
arises from the measure p, that is, C(�) =
{x ∈ T n | p · x ≥ 0}. Then the discrete cone

C ′ = C(�) \ {−x1, . . . ,−xm}

corresponds to an almost representable com-
parative probability ordering which almost
agrees with p, and satisfies Ci for all i < m,
but does not satisfy Cm.

It should be noted that the condition (3) is
most demanding and very difficult to achieve.

For our construction of extremal cones we will
use the above theorem. We will construct a
p×p matrix U with columns u1, . . . ,up which
has the following properties:

(i) The only dependence between the
columns ui is

∑p
i=1 ui = 0, up to mul-

tiplication by a nonzero real number.

(ii) The only vectors in col(U) ∩ T p are ±ui

and 0, where col(U) is the column space
of U .

(iii) None of the uk are of the form ei or ±ei±
ej, for i 6= j.

We claim that the conditions of the Theo-
rem 2 will then be possible to satisfy. In-
deed, the only thing to check is the existence
of a positive integer-valued vector p with the
property pU = 0. Since U has rank p−1, such
a vector p satisfying pU = 0 is unique up to a
scalar multiple and has rational co-ordinates.
From the conditions on the columns of U we
know that neither ei nor ±ei ± ej belongs to
Col(U) for and i and j. This implies that
pi 6= 0 and |pi| 6= |pj| for all i 6= j. If any of
the co-ordinates of p are negative, we change
U multiplying the respective rows by −1. We
then know that all co-ordinates of p are dis-
tinct, and so by permuting the rows of U we
may assume that p1 > p2 > . . . > pn > 0. Fi-
nally p can be normalised so that

∑n
i=1 pi = 1.

Summarising we have the following:



Theorem 3. If a p × p matrix U satisfying
properties (i)–(iii) exists, then there exists an
extremal discrete cone in T p.

3 The Construction of U

Our construction is based on the distribution
of quadratic residues modulo a prime p > 3.
The idea is to alter the vector of quadratic
residue symbols

r =

(
0,

(
1

p

)
,

(
2

p

)
, . . . ,

(
p− 1

p

))T

in the first two co-ordinates as follows

q =

(
1,

(
1

p

)
− 1,

(
2

p

)
, . . . ,

(
p− 1

p

))T

,

and then form a circulant matrix

Q =
[
q, Sq, S2q, . . . , Sp−1q

]
from q, where S is the standard matrix
of the circular shift operator (which trans-
lates all coordinates one place down, with
the last co-ordinate being placed at the top).
The quadratic residue nature of these vec-
tors means that 1’s and −1’s are evenly dis-
tributed, making it hard for any nontrivial lin-
ear combination to have co-ordinates all from
T , while at the same time the matrix still
has enough structure that we may effectively
prove that the desired conditions hold.

Further we will also need the matrix

R =
[
r, Sr, S2r, . . . , Sp−1r

]
,

and we note that Q = R + I − S, where I is
the identity matrix.

Now finally we form U from Q = (qij) by sub-
tracting 1 from q11 and adding 1 to q1p, and
denote its columns by u1, . . . ,up. We note
that ui ∈ T p for all i = 1, 2, . . . , p. Here is an
example of this construction for p = 5:

U =


0 1 −1 −1 1
0 1 1 −1 −1

−1 0 1 1 −1
−1 −1 0 1 1

1 −1 −1 0 1

 . (4)

Because Q and R are circulant, they lie
in the one-generated subalgebra of the ma-
trix algebra generated by S. Being in one-
generated subalgebra, any two circulant ma-
trices commute. If A is a circulant matrix
with first column (a0, a1, . . . , ap−1)

T then A =∑p−1
k=0 akS

k. Let the pth roots of unity over Q
be 1, ω, ω2, . . . ωp−1. Then these roots of unity
are exactly the eigenvalues of S and, hence,
the eigenvalues of A will be

λi =

p−1∑
k=0

akω
ki, (i = 1, . . . , p)

(see also [6]). We then know that the eigen-
values of Q are given by

λi = 1 +

((
1

p

)
− 1

)
ωi +

(
2

p

)
ω2i + . . . ,

(i = 1, . . . , p),

λi = 1− ωi +

p−1∑
k=0

ωki

(
k

p

)

Now, by the fact that
(

ij
p

)
=
(

i
p

)(
i
p

)
, we

have

λi = 1− ωi +

(
i−1

p

) p−1∑
k=0

ωki

(
ki

p

)

λi = 1− ωi +

(
i−1

p

) p−1∑
k=0

ωk

(
k

p

)
Denote by τ the Gauss sum

∑p−1
k=1(

k
p
)ωk. It is

known [7] that τ 2 =
(
−1
p

)
p, so if i 6= p (as

λp = 0) we have

λi = 1− ωi ±

√(
−1

p

)
p.

It should be noted that λi 6= 0 for i 6= p, so
so Q has rank p− 1. Denote by W the space
spanned by the eigenvectors corresponding to



nonzero eigenvalues of Q. Since these eigen-
vectors are of the form

µi = (1, ωi, ω2i, . . . , ω(p−1)i)T ,

i = 1, 2, . . . , p− 1,

where ω is a pth root of the unity, we have
W = n⊥, where n = (1, . . . , 1) is the eigen-
vector belonging to 0.

Let us now define the integer span of the
columns of U as follows:

intspan{u1, . . . ,up} =

{
p∑

i=1

niui | ni ∈ Z

}
.

We will now prove that U satisfies proper-
ties (i) to (iii) given in section 2. We wish to
split the proof of (ii) into two smaller state-
ments, the first that the only integer vectors
in col(U)∩T p are those of the form

∑p
i=1 niui

with ni ∈ Z, and the second that there are
no vectors of this form in T p other than
±u1, . . . ,±un and 0. They will be proved in
the following two lemmata.

Lemma 1. If the condition of Theorem 1 is
satisfied,

col(U) ∩ T p ⊂ intspan{u1, . . . ,up}.

Proof. We will make use here of the natural
homomorphism

φ : Z −→ Zq = Z/qZ,

for a given prime q, and denote the image of a
under φ by a. This mapping can be extended
in an obvious way to a mapping of integer
vectors, or integer matrices, and the image of
a vector u or matrix M under this mapping
will be similarly denoted u or M , respectively.

Assuming the contrary of the lemma, there
must be some ai, bi ∈ Z, for i = 1, 2, . . . , p,
such that

p∑
i=1

ai

bi

ui ∈ T p and

u =

p∑
i=1

ai

bi

ui 6∈ intspan{u1, . . . ,up}. (5)

Since u1 + . . .+up = 0 we may always obtain
a relation (5) with ai = 0 for an arbitrary i.
It is clear that u 6= 0 and after representing u
in the form

u =

p∑
i=1

ni

n
ui,

where gcd(n1, . . . , np) is relatively prime to n,
we may assume that it is not true that n1 =
. . . = np (otherwise u = 0). As n > 1, let q
be any prime divisor of n. Then

p∑
i=1

niui ∈ qZp

where at least one ni is not divisible by q,
since gcd(n1, . . . , np) is relatively prime to n.
Hence

p∑
i=1

niui = 0,

and such relations may be obtained with ni =
0 for arbitrary i. Therefore any p− 1 element
subset of {u1, . . . ,up} must have a linear de-
pendency. As a result, the determinant of any
principal minor of U is 0, or equivalently the
determinant of any principal minor of U is di-
visible by q. For example, if we take U for
p = 5 as given in (4), the determinant of the
bottom left principal minor

0 1 1 −1
−1 0 1 1
−1 −1 0 1

1 −1 −1 0


is 1 so there is no prime q dividing all principal
minor determinants.

Because Q has row sum and column sum both
equal to the zero vector, the formula describ-
ing how the determinant changes under row
and column operations implies that all prin-
cipal minors of Q must have determinant ±D
for some D. If q is a prime dividing the deter-
minants of all principal minors of U , it must
also divide D as Q and U share some principal



minors. The determinant of the (i, 1)st prin-
cipal minor of U will be the determinant of
the corresponding principal minor of Q plus
the determinant of the matrix Vi obtained by
removing from Q rows 1 and i, and columns 1
and p. This implies that q divides det(Vi) for
all i. Therefore Q must have nullity at least
2, and because the sum of the rows of Q is
0 it will also have a set of p − 2 dependent
columns. We will now show that this leads to
a contradiction.

To show that Q has no p− 2 columns with a
dependency modulo any prime dividing D, let
us write Q = R+I−S, where I is the identity
matrix and S is the standard matrix of the
shift as before. We wish to show that W =
(R−I +S)(R+I−S) has no p−2 dependent
columns, and, hence, Q = R + I −S does not
have them either. Because any two circulant
matrices commute, R(I − S) = (I − S)R and
W = R2 − (I − S)2.

We may now calculate R2 by expanding the

identity τ 2 =
(
−1
p

)
p, where τ is the Gauss

sum mentioned previously. We have

(
−1

p

)
p = τ 2 =

(
p−1∑
i=1

(
i

p

)
ωi

)2

=

p−1∑
n=0

ωn
∑

i+j≡n

(
i

p

)(
j

p

)
, (6)

where the congruence in the subscript is mod-
ulo p. Since

∑
i≡−j

(
i

p

)(
j

p

)
=

p−1∑
i=1

(
−i2

p

)
=

(
−1

p

)
(p−1),

(7)
the formula (6) implies

(
−1

p

)
=

p−1∑
n=1

ωn
∑

i+j≡n

(
i

p

)(
j

p

)

or

−
(
−1

p

) p−1∑
n=1

ωn =

(
−1

p

)

=

p−1∑
n=1

ωn
∑

i+j≡n

(
i

p

)(
j

p

)
.

Because {ωn}p−1
n=1 is linearly independent over

Q, we must have∑
i+j≡n

(
i

p

)(
j

p

)
= −

(
−1

p

)
(8)

for all n 6= 0.

The (ij)th entry of R2 is equal to

p∑
k=1

(
i− k

p

)(
k − j

p

)
=

∑
m+n≡i−j

(
m

p

)(
n

p

)
,

Therefore, due to (7) and (8), R2 has en-
tries −(−1

p
) everywhere except for (−1

p
)(p −

1) on the main diagonal. Therefore R2 =

−
(
−1
p

)
J +

(
−1
p

)
pI, where I is the identity

matrix and J is the matrix whose entries are
all 1.

For example in the case p = 5,
(
−1
p

)
= 1 and

we have

R =


0 1 −1 −1 1
1 0 1 −1 −1

−1 1 0 1 −1
−1 −1 1 0 1

1 −1 −1 1 0

 ,

R2 =


4 −1 −1 −1 −1

−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

 ,

W =


3 −1 −1 −2 1
1 3 −1 −1 −2

−2 1 3 −1 −1
−1 −2 1 3 −1
−1 −1 −2 1 3

 .



Because W = −
(
−1
p

)
J+
(
−1
p

)
pI−I+2S−S2

is circulant, we may calculate the eigenvalues
of W in the algebraic closure Zq of Zq in a
similar way as for circulant matrices in Q. We
first assume that q is different from p. Then
if we let 1, π, π2, . . . , πp−1 denote the solutions
to xp = 1 in Zq we find that the eigenval-
ues of the circulant matrix with first column
(a0, a1, . . . , ap−1)

T will be

λi =

p−1∑
k=0

akπ
ki
q , (i = 1, . . . , p)

The eigenvalues of W are therefore λi =

−(−1
p

)
∑p−1

k=0 πki+
(
−1
p

)
p−1+2πi−π2i, which

when i 6= p can be rewritten as λi =
(
−1
p

)
p−

1 + 2πi − π2i (as we know the sum of all so-
lutions to xp − 1 = 0 is 0). We know that the
matrix W has nullity at least 2 so λi = 0 for
some i ≤ p, i.e. there must be some θ = πj

such that

θ2 − 2θ −
(
−1

p

)
p + 1 = 0. (9)

We first consider the case q = 2. Because we
assumed that p 6= q we know that p is odd, so
(9) reduces to

θ2 = 0,

which contradicts our assumption that θ sat-
isfied θp = 1. We assume from here on that
q is odd. Suppose that some p − 2 columns
of W have a linear dependence. Write the de-
pendency in the form

∑p
i=1 niwi = 0 where

ni ∈ Zq and two of the ni are 0. The ith row
of W gives the following equation between the
n1, . . . , np

−
(
−1

p

) p∑
i=1

ni +

(
−1

p

)
pni

− ni + 2ni+1 − ni+2 = 0, (10)

and by taking the difference of the equa-
tions corresponding to two consecutive rows

we have the equation

ni − 3ni−1 +

(
3−

(
−1

p

)
p

)
ni−2

+

((
−1

p

)
p− 1

)
ni−3 = 0. (11)

We may consider the pth row and 1st row as
consecutive rows as well and in the recurrence
relation (11) we can consider indices mod p,
if we define ni+p = ni. When we consider
this as a recurrence relation, the characteristic
polynomial of the relation factors in Zq as

(x− 1)(x2 − 2x−
(
−1

p

)
p + 1))

= (x− 1)(x− θ)(x− α),

where θ is as in (9). We recap that θp =
1. Then ni = Aαi + Bθi + C, as it may be
easily shown that 1, θ and α are all different.
If we suppose A 6= 0, the requirement that
ni+p = ni forces αp = 1. Assume that both α
and θ are of the form πi and πj respectively.
Completing the square in (9) we have

πi = 1 + β and πj = 1− β.

Where β satisfies β2 =
(
−1
p

)
p. Raising both

of these equations to the power of p we obtain

(1+β)p−1 = 0 and (1−β)p−1 = 0. (12)

Expanding these numbers as c±dβ with c, d ∈
Zq, the fact β is nonzero implies c and d are
both 0. It should be noted that if β is not in
Zq we have c = d = 0 from only one of these
equations. In general, however, β may lie in
Zq so the equation c + dβ = 0 does not imply
c = d = 0, and we need both equations to
ensure this.

We may now construct a homomorphism

ϕ : Z

(√(
−1

p

)
p

)
−→ Zq(β)



defined by

ϕ : x + y

√(
−1

p

)
p 7−→ x + yβ

This may be routinely verified to be a homo-
morphism.

Due to (12) we must have

ϕ

((
1 +

√(
−1

p

)
p

)p

− 1

)
= a + bβ = 0,

from which, as noted above, both a and b in
(1) must be divisible by q, which contradicts
gcd(a, b) = p.

In the case A = 0 we have ni = Bθi + C.
If ni = nj = 0 for some distinct i and j we
have B + Cθi = B + Cθj = 0 which implies
B = C = 0. However this contradicts the as-
sumption that the dependence was nontrivial.

We now consider the case q = p. The recur-
rence relation (10) becomes

−
(
−1

p

) p∑
k=1

ni−ni +2ni+1−ni+2 = 0, (13)

and the recurrence relation (11) in this case
has characteristic polynomial (x− 1)3. The
latter has solution ni = A+Bi+Ci2. Firstly,
we note that

p∑
k=1

ni =

p∑
k=1

(A + Bk + Ck2) = 0.

Indeed, since p 6= 2, we have
∑p

k=1(A+Bk) =
pA+ 1

2
p(p+1)B = 0. Also if β is any primitive

element of Zp, then βp−1 = 1,and

p∑
k=1

Ck2 = C

p−2∑
i=0

β2i = C
β2p−2 − 1

β2 − 1
= 0,

where β2 6= 1, because p > 3. Therefore (13)
becomes

ni − 2ni+1 + ni+2 = 0,

and, substituting here ni = A + Bi + Ci2, we
have 2C = 0.

Therefore ni = A + Bi, and so if ni takes the
value 0 twice we must have A = B = 0, and
ni must be identically 0, which implies the
dependence is trivial. Therefore there are no
p − 2 dependent columns of Q modulo q for
any q|D, including q = p.

This gives us (ii) when combined with the fol-
lowing:

Lemma 2. For p > 131 satisfying the condi-
tions of Theorem 1,

intspan{u1, . . . ,up}∩T p = {±u1, . . . ,±up,0}.

Proof. Recall that λi are the eigenvalues of
Q, and W = (1, . . . , 1)⊥ is the space spanned
by eigenvectors of Q corresponding to nonzero
eigenvalues. Because |λi| ≥

√
p− 2 for i 6= p,

all v ∈ W satisfy

‖Qv‖ ≥ (
√

p− 2)‖v‖.

In general we may estimate ‖Qv‖ from below
as

‖Qv‖ ≥ (
√

p− 2)‖w‖, (14)

where w=projW (v).

If some k = (k1, . . . , kp) ∈ Zp satisfies Uk ∈
T p we have ‖Uk‖ ≤ √

p. Denote projW (k)
by s = (s1, . . . , sp). Because ‖Uk‖ and ‖Qk‖
differ by at most |k1 − kp| by the triangle in-
equality, we may combine this with (14) to
obtain

√
p + |k1 − kp| ≥ (

√
p− 2)‖s‖ (15)

The first and pth entries of s differ by k1−kp,
so the sum of their absolute values is at least
|k1− kp|. By the arithmetic mean - quadratic
mean inequality this implies s2

1 + s2
p ≥ 1

2
|k1 −

kp|2, and

‖s‖ ≥ 1√
2
|k1 − kp|.



Combining this with (15) gives

√
p + |k1 − kp| ≥ (

√
p− 2)

1√
2
|k1 − kp|

or √
2p

(
√

p− 2−
√

2)
≥ |k1 − kp|.

For p > 131 it may be shown this implies
|k1−kp| ≤ 1. We may use a similar argument
to show that ‖projN(k)‖ ≥ 1√

2
|ki−kj| for any

i and j, so

√
p + 1 ≥ 1√

2
(
√

p− 2)|ki − kj|

(the 1 here arising from the estimate |k1 −
kp| ≤ 1). For p > 100 this implies |ki − kj| ≤
1 as before. We may therefore assume that
some of the ki are 0 and the rest 1. If there
are m and ` of each, respectively, s will have
m entries equal to −l

p
and ` equal to m

p
, and,

since m + ` = p,

‖s‖2 =
m2` + `2m

p2
=

m`

p
=

m(p−m)

p
.

Since for m = 1 and m = p − 1 we obtain
vectors of the form ±ui, we may assume that
2 ≤ m ≤ p − 2.The minimum value of ‖s‖2

will be at m = 2 and m = p − 2, where it is
2(p−2)

p
. Therefore if there is to be a nontrivial

vector in T p, which is a linear combination of
ui’s, by (15) we must have

(
√

p− 2)

√
2(p− 2)

p
≤ √

p + 1,

which can be shown implies p < 100. There-
fore for all p > 131, no non-trivial integral
linear combinations of the ui are contained in
T p.

We may now check properties (i) and (iii) are
satisfied. Because the bottom left principal
minor of U is the same as that of Q, and it is
known that this minor has nonzero determi-
nant, U has rank p−1. Therefore

∑p
i=1 ui = 0

is the only dependence among the columns of
U . As (iii) is trivial, U satisfies all the require-
ments for the existence of a maximal cone.

4 Conclusion

Conder and Slinko [1] conjectured that g(n) =
n for all n ≥ 7 but this hypothesis remains
open. However, we believe that g(n) = n for
all sufficiently large n for a number of reasons.
First, the construction used here may be var-
ied in a number of ways, so that even for non-
optimus primes it is likely that we may find
a matrix of the desired type. Secondly, we
think that with some work our ideas could be
extended to numbers with no small prime fac-
tors. Thirdly, computational checking of the
matrices used here in cases where the primes
are non-optimus has verified that the con-
struction works for all primes between 7 and
23, and so we believe that this construction
works for all primes. More general compu-
tational investigation has in fact proven that
g(n) = n for all n between 7 and 12.

We note that it is also not known whether or
not f(n) can be greater than g(n).
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