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Abstract


A protocol for the elicitation of imprecise probabilities
based on linear programming is applied to the case of
two continuous variables. Two medical experts were
elicited. The resulting convex set of probability dis-
tributions was compared with the results obtained by
the application of an imprecise Dirichlet model to a
database. An indicator is introduced to assess the
inferential skill of the medical experts.
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1 Introduction


The method for the treatment of the a priori accumu-
lated knowledge that one has about a state of the
world comes from the so-called Bayesian inference.
The a priori probability used in this setup, also called
subjective or epistemic probability, represents the de-
gree of belief that the individual has in the occur-
rence of an event which is represented in terms of the
random variable θ. One of the main drawbacks of
this approach, as pointed out in [6], is that a pre-
cise prior distribution on the random variable θ is
required. Several approaches were proposed to try
to overcome this disadvantage. These include upper
and lower probability [4], upper and lower previsions
[3] and the consideration of families of prior distrib-
utions. A whole new field of imprecise probabilities
deals with this kind of problem.


The protocol presented in [6, 2, 5], and used here, is
part of a method that provides a systematic proce-
dure for the elicitation of a prior distribution of some
random variable θ from an expert. The available ev-
idence, in practical real world settings, is typically
of a mixed, partial, nature, and the expert’s knowl-
edge has always a certain degree of vagueness. The
new protocol is useful in these conditions. It avoids


a source of confusion inherent in the commonly used
betting schemes, where judgment would be elicited
through preferences, involving thus two different psy-
chological mechanisms. There is no need for a total
precision on behalf of the specialist, and there are no
errors to be treated statistically.


The method uses pairwise comparative probabilistic
assertions involving events defined by the random
variable θ. The general method does not require θ
to be a random variable; it could be just a category.


The protocol for the elicitation of prior knowledge pre-
sented in [6, 5, 2] is used here for the case of two con-
tinuous variables. The result of this application was
compared with the results obtained by the application
of an imprecise Dirichlet model presented in [3].


2 Linear Programming Imprecise


Probabilities Model


The Linear Programming Imprecise Probabilities
Model (LPIPM) is an elicitation method that was pre-
sented in [5, 6] and further developed in [2]. It will be
summarized here.


The method is a systematic procedure to elicit an ex-
pert prior distribution of some unknown real-valued
continuous random variable θ. The expert announces
minimum and maximum plausible values for θ. In
his mind he evaluates that the probability that the
true value of θ lies outside these two limits, θmin


and θmax, is zero. It is assumed that θ is distrib-
uted in the interval [θmin, θmax] according to a prob-
ability density π. This interval is partitioned into
2n subintervals of equal Lebesgue measure, [θj−1, θj),
j = 1, 2, . . . , 2n. The value of n depends upon the
intended precision. If one accepts that 5% is a good
precision for an expert one then can adopt n = 10 (20
slices of 5%). It is the usual quantization procedure
of a continuous variable. It is convenient to repre-
sent the interval [θj−1, θj) by θj , for short. Define







also πj = Pr{θ ∈ [θj−1, θj) = π(θj), the probability
that θ belongs to the jth subinterval. The probability
that θ belongs to the interval [θj , θj+k) is


∑k


i=0
πj+i


for j + k ≤ 2n. It is clear that
∑2n


j=1
πj = 1.


The questions posed to the specialist are of the fol-
lowing type: Which one is greater than the other,


Pr
{


θ ∈ [θj , θj+k)
}


or Pr
{


θ ∈ [θl, θl+m)} ?


The superposition of intervals may cause confusion, so
the two intervals in each question should not overlap.
Use of this assumption was made in order to elaborate
the indicators for the construction of the elicitation
questionnaire [6]. The problem is treated then as if
we were dealing with finitely many θ’s. More details
can be found in [5] and [6]. The general method was
extended for the nonaleatory case in [1] and [2]. In
this case one would have a set of finitely many cate-
gories, Θ = {θ1, θ2, . . . , θn}, where θj , j = 1, 2 . . . , n is
neither a number, nor represent an interval, as in the
continuous case explained previously. In other words,
θj would not be a random variable.


The input from a specialist consists then in answer-
ing a certain number of pairwise comparisons of the
probabilities of events, and also to express the rela-
tive odds of these events. Two linear programming
problems are posed:


Max
πj


(Min)


2n
∑


j=1


cjπj (1)


subject to:


ajk


k
∑


i=0


πj+i − alm


m
∑


i=0


πl+i ≤ bs (2)


πj ≥ 0, j = 1, 2, . . . , 2n (3)


2n
∑


j=1


πj = 1 (4)


Let q be the number of questions posed to the special-
ist, so one will have q constraints similar to equation 2,
where for each one, one choose ≤ bs or ≥ bs, depend-
ing on the specialist’s answer, ajk > 0, alm > 0, and
j + k < l to avoid overlapping between two intervals.


The values used in this work were ajk = alm = 1
and bs = 0. Therefore one wants to know just which
interval is more probable.


There are several possibilities for the choice of the cj ’s.
In the sequel they were chosen in such a way as to get
a distribution with the minimum expected value for θ
(the maximization problem) and a distribution with


a maximum expected value for θ (the minimization
problem). Hence


cj = 2n− j + 1 (5)


Note that to maximize


2n
∑


j=1


(2n − j + 1)πj (6)


is the same as to maximize


θ1 + θ2n


2
−


2n
∑


j=1


θjπj (7)


as far as the choice of πj , j = 1, 2, . . . , 2n is con-
cerned. Since the values θ1, θ2, . . . , θ2n are in an
arithmetic progression, one has θj+1 − θj = a for
j = 1, 2, . . . , 2n− 1 where a > 0. Then


θ1 + θ2n


2
=


θ1 + θ1 + (2n − 1) a


2
= θ1 +


2n − 1


2
a


So


θ1 + θ2n


2
−


2n
∑


j=1


θjπj = a








2n + 1


2
−


2n
∑


j=1


jπj








On the other hand,


∑


(2n − j + 1)πj = 2n + 1 −


2n
∑


j=1


jπj


One sees then that to maximize
∑


(2n − j + 1)πj


is the same as to minimize


2n
∑


j=1


θjπj


Clearly different c′js will produce different results.


The set of constraints guarantees that {πj}
2n
i=1 is in


fact a probability distribution, either for the maxi-
mum or for the minimum LP problem. If the c′js
are the ones defined by expression 5, all the convex
combinations of the two solutions (one correspond-
ing to the distribution with minimum expected value
for θ, i.e., the maximization problem, and the other to
the distribution with the maximum expected value for
θ, i.e., the minimization problem) will be consistent
with the expert’s answers. This convex set of prob-
ability distribution can then be used in inference or







decision procedures. Of course this family is, in prin-
ciple, smaller then the set of all possible probability
distributions compatible with the specialist answers.
To specify this last set is not a simple task. The “size”
of this family could be estimated by the volume of the
feasible set of the optimization problems.


One could use the same feasible set, but a different
objective function. Another objective function could
be the entropy of the distribution, defined by


H = −


2n
∑


j=1


πj log πj


the optimization problems would now be of the non-
linear programming type, but the reasoning is the
same.


Typically the two solution will be different, and one
will obtain two distribution functions as depicted in
Figure 1.


θ


Π(θ)


1


Πmax(θ) Πmin(θ)


Figure 1: Example of convex set of probability distri-
butions.


Let Πmax and Πmin be distribution functions on θ.
They are constructed from the solutions of the re-
spective linear programming problems. Notice that
an area will form between the two curves. The ratio
of this area to the total area [θmax − θmin] × 1 of the
rectangle was defined in [6, 2] as the vagueness, V ,
of the specialist. That is,


V =
1


2n


2n
∑


j=1


∣


∣Πmax(θj) − Πmin(θj)
∣


∣ (8)


The vagueness will be minimum if the specialist an-
swers all the questions consistently, i.e., the feasible
set of the LP problems is nonempty. If the specialist
does not answer any question, he will be totally con-
sistent, and its vagueness will be maximum (V = 1).
So, consistency, here, does not mean sharpness of the
elicited family of probability distributions.


The precision is defined by


P = 1 − V (9)


The more vague the specialist is, the less will be its
precision.


3 The Imprecise Dirichlet Model


Following the reasoning presented in [3], the available
data will be used to estimate the upper and lower
posterior probability in an Imprecise Dirichlet Model
(IDM). Walley [3] defined IDM as the set of all Dirich-
let distributions (s, t) for a given parameter s.


The Dirichlet (s, t) prior distribution for θ, where t =
(t1, t2, . . . , tk), has probability density function.


τ(π) ∝
∏


π
stj−1


j


where s > 0, tj > 0 for j = 1, . . . , k, and
∑k


j=1
tj = 1.


In this parametrization tj is the mean value of πj ac-
cording to the Dirichlet (s, t) and s determines the
influence of the prior distribution on posterior proba-
bility. The IDM is the set of all Dirichlet (s, t) distri-
butions The parameter s is considered to be a hyper-
parameter typically chosen between 1 and 2 (see [3]).


Each Dirichlet prior has a posterior distribution ob-
tained applying Bayes’ theorem. These prior distribu-
tions form the set of posterior Dirichlet distributions.
In this set are defined the posterior upper and lower
probabilities:


P (πj |x) =
nj + s


N + s
(10)


P (πj |x) =
nj


N + s
(11)


were nj denote the number of observations falling in
the jth cell θj in N trials and πj will denote the prob-
ability of the cell θj


The degree of imprecision in the posterior upper and
lower probabilities is defined in [3] can be measured
by


P (πj |n) − P (πj |n) =
s


N + s
(12)


For more details, see [8] and [7].


4 Application


Two medical doctors were submitted to an elicita-
tion protocol concerning the prior knowledge about
the systolic blood pressure (SBP) and diastolic blood
pressure (DBP) of an individual. The first doctor is
a young cardiologist (expert 1), an M.Sc. student in
Medicine. The second one is an experienced cardiolo-
gist (expert 2), specialized in the field of hypertension.
Both were given the same evidence concerning an in-
dividual: male, aged 46 years, Body Mass Index of
27 kg/m2 nonsmoker, policeman, educated up to the







highschool level, has no health complaints, and was
randomly chosen amongst all the individuals in his
city with similar characteristics.


The questions in the elicitation questionnaire con-
cerned the SBP and DBP of this individual. The elic-
itation protocol was of the same type as one presented
in [6]. For the SBP a minimum of 90 mm Hg and a
maximum of 190 mm Hg were established, and for the
DBP the minimum and maximum values established
were, respectively, 40 mm Hg and 100 mm Hg.


Differently from the elicitation presented in [6], where
only the SBP was considered, now the unknown state
of nature is a vector in a subset of the Euclidean space
R


2. In order to apply the linear programming based
elicitation method, the SBP×DBP rectangle was di-
vided into 20 cells labeled θj , j = 1, 2, . . . , 20 as shown
in Figure 2. For example θ10 = [170 − 190, 55− 70].


θ1 θ2 θ3 θ4 θ5


θ6 θ7 θ8 θ9 θ10


θ11 θ12 θ13 θ14 θ15


θ16 θ17 θ18 θ19 θ20


90 110 130 150 170 190


40


55


70


85


100


SBP


DBP


Figure 2: States of Nature


Notice that those θj ’s are not naturally ordered as in
the monodimensional case.


For the attribution of the cj ’s, the notion of pulse
blood pressure (PBP) was used. The pulse pressure
is the difference between the SBP and DBP. It is
known from physiology, that SBP is always greater
than DBP. In each cell θj (with the exception of the
left half side of θ16), the value of SBP is always greater
than the value of DBP. This is a logical necessary con-
dition of the cardiovascular dynamics. By consider-
ing the PBP one gets then a one-dimensional random
variable that is, thus, naturally orderable. Notice that
each θj there corresponds an average pulse pressure.


As far as the reduction to one dimension (PBP) is
concerned, that is, from the original two (DPB and
SBP), it should be mentioned that the medical doc-
tors are aware that there is a correlation between DBP
and SBP, and they took this into consideration when
answering the questionnaire (this correlation varies
with age). Moreover, PBP is an important marker


Table 1: The elicitation questionnaire.


[SBP, DBP] 1|0 [SBP, DBP]
1 [90 − 190, 40− 70] [90 − 190, 70− 100]
2 [90 − 150, 40− 100] [150 − 190, 40− 100]
3 [90 − 130, 40− 100] [130 − 190, 40− 100]
4 [90 − 190, 40− 70] [110 − 190, 70− 100]
5 [90 − 170, 40− 70] [90 − 190, 70− 100]
...


...
...


42 [110 − 130, 55− 70] [150 − 170, 70− 85]


of cardiovascular health. The PBP was discretized
by taking the mean values of DBP and SBP ranges.
For example, θ8 correspond to a pulse pressure of
140.0− 62.5 = 77.5 mm Hg (see Figure 2).


The cardiologists answered to the questionnaire inde-
pendently of each other. This experiment was per-
formed and its results were analyzed in [1], where
many applications of decision theory in cardiology are
presented.


Some questions of the questionnaire presented to the
cardiologists are shown in table 1. The first question,
for instance, is the following:


What is more like, that this individual’s
SBP is between 90 mm Hg and 190 mm Hg
and DBP is between 40 mm Hg e 70 mm Hg,
or that SBP is between 90 mm Hg and 190
mm Hg and DBP is between 70 mm Hg and
100 mm Hg?


4.1 Results


The evidence provided to the cardiologists were pur-
posedly scarce. In [6], indicators for the con-
struction of the elicitation questionnaire were pre-
sented. Besides guaranteeing symmetry and avoid-
ing bias, a questionnaire constructed based on the
mentioned indicators, guarantees the expert’s gradual
and smoothly progressive perception of the parameter
(state of nature; the random variable θ), distributed
along with the questionnaire. The idea in the con-
struction presented in [6] was not to confound the
specialist with reasoning retrocessions. So one should
take the first consistent answers, instead of a through
revision. The first expert (the young cardiologist) was
consistent only in the 17 first questions, and its vague-
ness was 18.75%. The experienced cardiologist was
able to be consistent in 31 of the 42 questions of the
elicitation questionnaire. Its vagueness was 33.33%.
The results of the LPIPM are shown in Figure 3 and
Figure 4,
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Figure 3: Elicitation results of expert 1.
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Figure 4: Elicitation results of expert 2.


4.2 The Inferential Skill


It could appear at first that the experienced cardiol-
ogist should have a smaller vagueness as compared to
the young cardiologist, and that the numerical results
obtained contradicted the common sense. But this is
not so. The scarce evidence provided to the special-
ists could not be a basis for obtaining a “thin” family
of probability distributions. The young cardiologist
thought it could do so and its vagueness was indeed
smaller than that of the experienced cardiologist. But
in doing this he was able to answer consistently only
to 17 questions, while the other was consistent in 32
questions, although with a larger vagueness.


Three parameters should be taken into account in or-
der to ascertain the inferential skill of the expert:


1. The difference of the averages of the maximum
and minimum distributions (∆µ), normalized by
∆µmax, which is the maximum value of ∆µ;


2. The fraction of consistently answered questions
(R);


3. The vagueness (V ).


An overall indicator, S, of inferential skill would be
then:


S ,
∆µ


∆µmax


+ R − V (13)


If the expert is a good one, the scarcity of the avail-
able evidence (input to him), should be reflected in a
compatible vagueness (V ) and difference between the
means of the two distributions ( ∆µ


∆µmax
). Given that,


the larger the value of R, the better the expert. If
the expert is not that good, R will tend to be smaller,
indicating a sharpness unwarranted by the scarce ev-
idence. If the expert has a fixed value in mind, for
example, the vagueness around this value will tend to
be smaller, contributing to a decrease in the overall
vagueness. Also, in this case, ( ∆µ


∆µmax
) will tend to be


smaller. This is an indication that the expert is not
so good. The experienced cardiologist had S = 0.83
and the less experienced one had S = 0.36. The fact
that the two distributions for the young cardiologist
touched each other, may be indicative that he fixed
his attention on a certain θj , creating a psychological
mechanism of anchorage.


5 Comparisons with a Database


The two elicitation results were compared with data
collected in a Brazilian sample of 2129 subjects. The
two specialists were not aware of the existence of the
data. By selecting a subset of the sample contain-
ing individuals with roughly the same characteristics
as the ones of the case presented to the two special-
ists, one obtains the probability distribution function
shown in Figure 5, alongwith the mean distribution
for each expert for comparison.


It is important to point out that a specific piece of
input was given to the two experts, namely, that the
individual was a policeman. In the database this was
not specified.


6 The Imprecise Dirichlet Model


Table 2 shows the results of the IDM method, for two
values of the hyperparameter s, namely, s = 1 and
s = 2. The database used is the same.
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Figure 5: Probabilities obtained from a database.


According to the interpretations forwarded in refer-
ence [3], s = 1 corresponds to “frequentists” and “ob-
jective Bayesians”, and s = 2, to an “overly cautious
Bayesian”. As the value of s increases, the expert
becomes more cautious.


7 The LPIPM and the IDM


Table 3 summarizes the results of the application of
the two models. The values of the probabilities P and
P were computed from expression 11 and 10, respec-
tively, for the IDM. For the LPIPM, those values were
computed from πmax and πmin, respectively.


The experienced cardiologist, expert 2, has the largest
degree of imprecision, according to the terminology
introduced by Walley (1996) [3]. For s = 1 (a “fre-
quentist”) and s = 2 (an “overly cautious Bayesian”)
the lower probabilities, using the IDM (only the data
was considered) were roughly the same, but the up-
per probability for the “overly cautious Bayesian” was
larger than the one of the frequentist. Both cardiol-
ogists and the “overly cautious Bayesian” (IDM) had
essentially the same upper probabilities. The two
smallest degrees of imprecision, close to each other,
were the one of expert 1 (the young cardiologist), and
the IDM with s = 1 (“frequentist”).


It was not told to the experts if the individual were
in good health or not. It was told only that the indi-
vidual had no health complaints.


The individuals in the database were randomly se-
lected in public places, and had no explicit heart prob-
lems. The database was used just to check if there
would be no large discrepancies between the probabil-
ities obtained from the experts and the one obtained


Table 2: Results of the IDM.


s = 1 s = 2


P P P P
θ1 0.008621 0 0.017094 0
θ2 0.008621 0 0.017094 0
θ3 0.008621 0 0.017094 0
θ4 0.008621 0 0.017094 0
θ5 0.008621 0 0.017094 0
θ6 0.008621 0 0.017094 0
θ7 0.008621 0 0.017094 0
θ8 0.008621 0 0.017094 0
θ9 0.008621 0 0.017094 0


θ10 0.008621 0 0.017094 0
θ11 0.017246 0.008625 0.025645 0.008551
θ12 0.241397 0.232776 0.24788 0.230786
θ13 0.137897 0.129276 0.145265 0.128171
θ14 0.008621 0 0.017094 0
θ15 0.008621 0 0.017094 0
θ16 0.017246 0.008625 0.025645 0.008551
θ17 0.137897 0.129276 0.145265 0.128171
θ18 0.379397 0.370776 0.384701 0.367607
θ19 0.112022 0.103401 0.119611 0.102517
θ20 0.017246 0.008625 0.025645 0.008551


Table 3: Results of the two models.


P P Degree of Imprecision
s = 1 47.13 59.20 12.07
s = 2 46.73 70.06 23.33
expert 1 57.50 70.00 12.50
expert 2 37.50 70.83 33.33


from the row data. The values shown in Figures 6, 7
e 8 do not point to large discrepancies.
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Figure 6: Expert 1


It seems reasonable to admit that the knowledge of
the experienced cardiologist is larger than the one
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Figure 7: Expert 2
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Figure 8: Data Base


that could be obtained from a sample of 115 indi-
viduals. Thus he can assign probability masses to a
broader range of blood pressures. It should be remem-
bered that it was mentioned explicitly in the written
specifications of the individual whose blood pressure
profile was to be assessed that he is a policeman. The
database does not explicit that. This is not an addi-
tional information for the expert. It was all the time
in the available evidence presented to him, and au-
tomatically included in the LPIPM. The professions
of the 115 individuals in the database were unknown;
they were randomly selected from the population, and
their professions were not registered in the database.


8 Final Remarks


The elicitation protocol presented in [6] and [2] was
useful in the assessement of the prior knowledge of two
cardiologists concerning the blood pressure profile of
an individual. An indicator of the inferential skill of
the experts, based on the constructs of the elicitation
method, was introduced, which can discriminate the
two assessed medical doctors. The experienced cardi-
ologist, in a comparison with the results of an IDM,


could be considered as a cautious Bayesian.
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