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Abstract

Probability-boxes, numerical possibility theory and belief
functions have been suggested as useful tools to repre-
sent imprecise, vague or incomplete information. They
are particularly appropriate in environmental risk assess-
ment where information is typically tainted with impre-
cision or incompleteness. Based on these notions, we
present and compare four different methods to propagate
objective and subjective uncertainties through multivariate
functions. Lastly, we use these different techniques on an
environmental real case of soil contamination by lead on
an ironworks brownfield.
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1 Introduction

In risk analysis, uncertainty regarding model parameters
has two origins. It may arise from randomness (often re-
ferred to as "objective uncertainty") due to natural vari-
ability of observations. Or it may be caused by impreci-
sion (often referred to as "subjective uncertainty") due to a
lack of information. In practice, while information regard-
ing variability is best conveyed using probability distribu-
tions, information regarding imprecision is more faithfully
conveyed using families of probability distributions en-
coded either by probability-boxes (upper & lower cumu-
lative distribution functions [18, 19]) or possibility distri-
butions (also called fuzzy intervals) [12] or yet by random
intervals using belief functions of Shafer [27].
Let T: Rn → R be a function (model) of n parameters xi

(x = (x1, ..., xn)). The knowledge on parameters xi can be
represented using a distribution of probability, of possibil-
ity, a mass function or a probability-box. Generally, in the
evaluation of risks for man and the environment, one tries
to estimate the probability PT (X)((−∞, e]) that the output
remains under a threshold e, an absorbed pollutant dose
limit for example. The current interest for the problem
of propagating heterogeneous uncertainties through math-
ematical models of phenomena of interest is witnessed by

recent publications of special issues of risk analysis jour-
nals, like in [25].
In this paper, we present and compare four different meth-
ods to estimate PT (X)((−∞, e]). The first method, dubbed
"Hybrid", processes variability and imprecision separately
by combining a Monte-Carlo technique with the extension
principle of fuzzy set theory [10]. The second method,
dubbed "Independent Random Sets", processes variability
and imprecision in the common framework of belief func-
tions and assumes independence between focal sets [2].
The third method, dubbed "Conservative Random Sets",
uses the same idea as the "Independent Random Sets" ap-
proach except that we now do not assume anything on the
dependency between variables. It determines the maximal
(resp. minimal) plausibility of events of interest (resp. be-
lief) by solving a linear optimization problem [2]. The
last method, dubbed "Dependency Bounds Convolution"
proposed by Williamson and Downs [29], gives extreme
bounds resulting from convolutions of two random vari-
ables under unknown dependency. This method propa-
gates probability-boxes (upper & lower cumulative distri-
bution functions) through mathematical models and thus
only provides probability-boxes as results. Each method
models (in)dependency between variables in a different
way. Hence, for instance, the "Hybrid" approach, con-
trary to the "Independent Random Sets" approach, is not a
counterpart to the calculus of probabilistic variables under
stochastic independence. We notice that the "Dependency
Bounds Convolution" approach does not give the same re-
sults as the "Conservative Random Sets" approach when
there are more than two variables (whereas they are equiv-
alent when we are faced with two variables as shown in
[17]). According to mathematical models used to repre-
sent the knowledge of xi, we will see that the "Conser-
vative Random Sets" approach, contrary to the "Depen-
dency Bounds Convolution" approach, provides the extent
to which a criterion T (X) ∈ A is satisfied where A is any
measurable set.
In Section 2, we recall basic notions of imprecise proba-
bilities and present three special cases that are easier to en-
code than general probability families: p-boxes, possibil-



ity distributions and finite random intervals (which induce
belief functions). In Section 3, we present and compare
four numerical methods for propagating objective (vari-
ability) and subjective (imprecision) information through
multivariate function T so to estimate probability bounds
for event of the form P(T (X) ≤ e) that refer to the likeli-
hood of a threshold violation, commonly found in environ-
mental studies. Lastly, in Section 4, we use these different
methods to process uncertainty on a real case of soil con-
tamination by lead on an ironworks brownfield.

2 Concise Representations of Imprecise
Probability

Consider a probability space (Ω,A,P). Let P be a prob-
ability family on the referential Ω and X be a random
variable associated with probability measure P. For all
A ⊆ Ω measurable, we define its upper probability P(A) =
supP∈P P(A) and its lower probability P(A) = infP∈P P(A).
It is clear that representing and reasoning with a family
of probabilities may be very complex. In the following
we consider three frameworks for representing special sets
of probability functions, which are more convenient for a
practical handling.

2.1 Probability boxes

A natural model of an ill-known probability measure is
obtained by considering a pair (F, F) of non-intersecting
cumulative distribution functions, generalising an interval.
The interval [F, F] such that F(x) ≤ F(x) ≤ F(x) ∀x ∈ R
is called a probability box (p-box) [18] [19]. In the prob-
ability box [F, F], the gap between F and F reflects the
incomplete nature of the knowledge, thus picturing the ex-
tent of what is ignored. A p-box encodes the set of proba-
bility measures

P(F ≤ F) = {P,∀x, F(x) ≤ F(x) ≤ F(x)}

whose cumulative distribution functions F are restricted
by the bounding pair (F, F).
Suppose (F, F) is induced from a probability family P

where F(x) = P((−∞, x]) and F(x) = P((−∞, x]) ∀x ∈ R.
Clearly, P(F ≤ F) strictly contains the set P it is built
from. This is already true if the family P is represented
by the upper and lower probabilities P(A) and P(A) for all
measurable sets A. One may not be able to reconstruct P

from these projections, only a superset of it can be recov-
ered. A fortiori, the p-box is even a looser approximation
of P. As we shall see, the p-box representation method can
be very imprecise, if F and F are not close to each other.
Nevertheless, it is clearly a very convenient representation.

2.2 Possibility Theory

Possibility theory [12] is relevant to represent consonant
imprecise knowledge. The basic tool is the possibility dis-
tribution, a mapping π from X to the unit interval such that
maxx∈X π(x) = 1. If X is the real line π is taken as the
membership function of a fuzzy interval, that is π is upper
semi-continuous, and its α-cuts {x, π(x) ≥ α} are closed
intervals [10]. A possibility distribution induces a pair of
functions [N,Π] such that

Π(A) = sup
x∈A
π(x)

and
N(A) = 1 − Π(A).

The following noticeable properties of possibility and ne-
cessity measures are

Π(A ∪ B) = max(Π(A),Π(B));

and
N(A ∩ B) = min(N(A),N(B))

We can interpret any pair of dual functions neces-
sity/possibility [N,Π] as upper and lower probabilities in-
duced from specific probability families. Let π be a possi-
bility distribution inducing a pair of functions [N,Π]. We
define the probability family P(π) = {P,∀A measurable,
N(A) ≤ P(A)} = {P,∀A measurable, P(A) ≤ Π(A)}. In this
case, supP∈P(π) P(A) = Π(A) and infP∈P(π) P(A) = N(A)
(see [8, 14]) hold. In other words, the family P(π) is en-
tirely determined by the probability intervals it generates.
Possibility distributions can be obtained by extracting pre-
diction intervals from probability measures ([11]), or by
linear approximation between a core and a support pro-
vided by some expert. More generally the expert may sup-
ply pairs (measurable set Ai, necessity weight λi) inter-
preted as stating that the probability P(Ai) is at least equal
to λi where Ai is a measurable set (an interval containing
the value of interest). We define the corresponding prob-
ability family as follows: P = {P,∀Ai, λi ≤ P(Ai)}. If the
sets Ai are nested (A1 ⊂ A2 ⊂ · · · ⊂ An, as can be expected
for a family of confidence intervals), then there is a possi-
bility distribution ( namely π(x) = 1 if x ∈ A1 and 1 − λi

if x ∈ Ai+1 \ Ai,∀i > 1) such that P = Π and P = N (see
[14], and in the infinite case [8]).
It is tempting to define a particular p-box [F, F] from π
such that F(x) = Π((−∞, x]) and F(x) = N((−∞, x]). But
this p-box contains many more probability functions than
P(π) (see [1])

2.3 Random sets

A discrete random set is defined by a mass distribution
ν : F → [0, 1] assigning positive weights to measur-
able subsets of Ω in a finite family F It is such that



∑
E∈F ν(E) = 1. A set E ∈ F is called a focal set. The

theory of evidence introduced by Shafer [27] and elabo-
rated further by Smets [28] introduces belief Bel and Plau-
sibility Pl measures defined as Bel(A) =

∑
E,E⊆A ν(E) and

Pl(A) =
∑

E,E∩A,∅ ν(E) = 1 − Bel(Ā).
This framework allows imprecision and variability to be
treated separately within a single framework. As in possi-
bility theory, any pair of dual functions belief/plausibility
[Bel, Pl] can be interpreted as lower and upper probabil-
ities. Indeed a mass distribution ν encodes the probabil-
ity family P(ν) = {P,∀A measurable, Bel(A) ≤ P(A)} =
{P,∀A measurable, P(A) ≤ Pl(A)}. In this case we have:
P = Pl and P = Bel.This view of belief functions is at odds
with the theory of evidence of Shafer and and the transfer-
able belief model of Smets (who never consider this proba-
bility family as part of their framework) but was originally
proposed by Dempster [9]. He considered the image of a
probability space via a set-valued mapping. In this view,
Bel(A) is the minimal amount of probability that must be
assigned to A by sharing the probability weights defined
by the mass function among single values in the focal sets.
Pl(A) is the maximal amount of probability that can be
likewise assigned to A. The random set framework encom-
passes probability theory (when focal sets are singletons)
and possibility theory (when focal sets are nested). In the
former case Bel = Pl = P, and in the latter case Bel = N,
Pl = Π.
We may define an upper F and a lower F cumulative dis-
tribution function (a particular p-box) such that

F(x) = Pl(X ∈ (−∞, x]) F(x) = Bel(X ∈ (−∞, x])

But this p-box contains again many more probability func-
tions than P(ν).

2.4 Discretized encoding of probability, possibility
and p-box as random sets

Random sets as used by Shafer and Smets [27] encompass
possibility and probability theories in the discrete case, not
in the continuous case (even if continuous belief functions
can be envisaged). Hence, we must build a discretized
version of continuous probability distributions p, and pos-
sibility distributions π by means of some mass distribu-
tion ν. The discrete representation will be approximate
but it allows for computations. Note that statistical data
and poor probabilistic data is often obtained in a discrete,
finite format. Continuous distributions are thus idealisa-
tions of the actual data. Hence one may argue that discrete
representations are often closer to the way information is
actually obtained. The step consisting of discretising con-
tinuous distributions may sometimes be bypassed, because
the data can sometimes be directly modelled as a discrete
random set or interval. This is clearly one of the ideas
pervading Shafer’s theory of evidence.

• Let X be a real random variable. In the discrete case,

focal elements are singletons ({xi})i and the mass dis-
tribution ν is just defined by ν({xi}) = P(X = xi).
In the continuous case, we can define focal inter-
vals (]xi, xi+1])i by discretizing the support of a prob-
ability density into m intervals and a mass distribu-
tion ν is defined by ν(]xi, xi+1]) = P(X ∈]xi, xi+1])
∀ i = 1 . . .m. This discretication achieves a bracket-
ing approximation of the continuous probability mea-
sure, in the sense that Bel(A) ≤ P(A) ≤ Pl(A),∀A
measurable, as noticed by Dubois and Prade [13].

• Let X be a possibilistic variable. Focal sets corre-
spond to a selection of α-cuts

πα j = {x|π(x) ≥ α j}, ∀ j = 1...q (1)

of possibility distribution π associated with X such
that α1 = 1 > α j > α j+1 > αq > 0, which en-
sures πα j ⊆ πα j+1 ). Mass distribution ν is defined by
ν(πα j ) = α j − α j+1 ∀ j = 1 . . .q with αq+1 = 0. Then
the corresponding discrete possibility distribution is
a lower approximation (more precise) of the contin-
uous one. Alternatively, an upper approximation is
obtained by letting ν(πα j+1 ) = α j − α j+1, by conven-
tion παq+1 being the support of π.

• Let X be an ill-defined random variable represented
by a p-box [FX , FX]. There is no unique way of rep-
resenting a p-box by a mass assignment. If F−1

X (0) <

F
−1
X (1) where

F−1
X (p) = min{x|FX(x) ≥ p}, ∀ p ∈ [0, 1] (2)

F
−1
X (p) = min{x|FX(x) ≥ p}, ∀ p ∈ [0, 1] (3)

we can choose focal sets of the form
([F
−1
X (pi), F−1

X (pi)])i and the mass distribution

ν such that ν([F
−1
X (pi), F−1

X (pi)]) = pi − pi−1

where 1 ≥ pi > pi−1 > 0. However, if

F−1
X (0) > F

−1
X (1), we can choose focal sets of

the form [F
−1
X (pi), F−1

X (1 − pi)] with the same last
mass distribution. How to determine the least specific
mass distribution ν associated with focal sets from a
p-box (or most reasonable in some sense) is an open
problem.

3 Approaches to the joint propagation of
imprecision and variability

Let us assume k < n random variables (X1, ..., Xk)
taking values (x1, ..., xk) and n − k ill-known quanti-
ties (Xk+1, ..., Xn) taking values (xk+1, ..., xn) represented
by possibility distributions (πXk+1 , ..., πXn). This section
presents four methods to propagate such heterogeneous
uncertainties pervading the parameters (Xi)i=1...n through



a multivariate function T . Typically, (X1, ..., Xk) are sup-
posed to be variable quantities that can be properly ob-
served via sufficiently rich statistical experiments. On the
contrary, (Xi)i=1...n may be quantities on which no signifi-
cant statistical data is available, but that can be informed
via expert opinions in the form of “confidence” intervals.
These quantities may be purely deterministic (not subject
to variability) but in any case ill-known.

3.1 "Hybrid" possibility-probability approach

The "Hybrid" propagation method, a first version of which
was proposed in [24] involves two main steps (see Figure
1). It combines a Monte-Carlo technique (Random Sam-
pling) with the extension principle of fuzzy set theory [10]
(interval analysis by α-cuts). We first perform a random
sampling of the random variables (X1 = x1, ..., Xk = xk)
by taking into consideration known dependencies ( as non
linear monotone dependence [5] for instance) and fuzzy
interval analysis is used to estimate T . Even if we can
account for some dependencies between random variables
with the Monte-Carlo method, it is necessary to be aware
that it cannot account for all forms of dependence [20].
The knowledge on the value of T (X) becomes a fuzzy sub-
set, for each k-tuple. Random sampling is resumed and the
process is performed in an iterative fashion in order to ob-
tain a sample (πT

1 , ..., π
T
m) of fuzzy subsets where m is the

number of samples of the k random variables. T (X) then
becomes a fuzzy random variable (or a family of random
possibility distributions) in the sense of [23].

We must emphasize the fact that the extension prin-
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Figure 1: Outline of the "Hybrid" method [24]

ciple also underlies a dependence assumption on possi-
bilistic variables. In fact the presence of imprecision on
Xk+1, ..., Xn potentially generates two levels of dependen-

cies. The first one is a dependence between information
sources attached to variables and the second one is a de-
pendence between variables themselves. The extension
principle [10]; ∀u ∈ R:

πT (u) = sup
xk+1,...,xn,T (x1,...,xn)=u

min(πXk+1(xk+1), ..., πXn(xn))

first assumes strong dependence between information
sources pertaining to possibilistic variables, i.e, on the
choice of confidence levels or α-cuts induced by these
confidence levels [13]. However, this form of depen-
dence does not presuppose any genuine functional (ob-
jective) dependence between possibilistic variables inside
the domain πXk+1

α × · · · × π
Xn
α . The use of "minimum"

assumes non-interaction between Xk+1, ..., Xn, which ex-
presses a lack of knowledge about the links between the
values of Xk+1, ..., Xn and a lack of commitment as to
whether Xk+1, ..., Xn are linked or not. Indeed, the least
specific joint possibility distribution whose projections
on the Xk+1, . . . , Xn axes are πXk+1 , . . . , πXn , is precisely
πXk+1,...,Xn = min(πXk+1 , . . . , πXn). As a consequence of the
dependence on the choice of confidence levels, one cannot
interpret the calculus of possibilistic variables as a conser-
vative counterpart to the calculus of probabilistic variables
under stochastic independence.
Now, from the sample (πT

i )i=1...m of random fuzzy subsets
T (X), we encode each πT

i as a belief function with fo-
cal sets corresponding to α-cuts (πT

iα)α and the associated
mass distribution is (ναpi)α (see Section 2.3). We obtain
a weighted random sampling of intervals defining a belief
function. Then, we can estimate, for all measurable sets A,
PlT (A) and BelT (A) such that [3]:

PlT (A) =
∑

(i,α) πiα∩A,∅

ναpi BelT (A) =
∑

(i,α) πiα⊆A

ναpi

These evaluations are of the form:

PlT (A) =
∑

i

piΠ
T
i (A) BelT (A) =

∑

i

piN
T
i (A)

where ΠT
i (resp. NT

i ) is the possibility measure (resp.
necessity measure) associated with the possibility distri-
bution πT

i . This technique thus computes the eventwise
weighted average of the possibility measures associated
with each output fuzzy interval, and applies to any event.
A more refined representation of our knowledge of the
probability of an event A induced by such a random fuzzy
variable takes the form of a second order possibility dis-
tribution π̃(A) [6] on the unit interval. Indeed for each
confidence level α, we obtain a random set (πT

iα)i, we
thus can compute the plausibility Plα(A) and the belief
Belα(A) for each value α. Nested intervals of the form
([Plα(A), Belα(A)])α define the α-cuts of π̃(A) and it is easy
to see that PlT (A) and BelT (A) are upper and lower bounds
of the mean interval of π̃(A) [15].

PlT (A) =
∫ 1

0
Plα(A)dα BelT (A) =

∫ 1

0
Belα(A)dα



The proof of this result is given in [3].

3.2 The random set approach

In this Section, we exploit the fact that belief functions
[27] encompass possibility and probability theory. We
present two different ways to use belief functions to prop-
agate heterogeneous information (variability + impreci-
sion) in a homogeneous framework by assuming first in-
dependence among all focal sets, and then unknown de-
pendence among focal sets.

3.2.1 "Independent Random Sets" approach

By using Section 2.4, consider Xk+1, . . . , Xn, possibilis-
tic variables encoded as belief functions by their fo-
cal sets (πXk+1

αk+1
)αk+1 , . . . , (π

Xn
αn

)αn and the mass distributions
(νXk+1
αk+1

)αk+1 , . . . , (ν
Xn
αn

)αn . For the sake of clarity, we sup-
pose random variables X1, . . . , Xk are discrete. Let dis-
crete probabilistic variables X1, . . . , Xk be encoded by
their focal singletons ({xβ1

1 })β1 , . . . , ({x
βk

k })βk and the mass
distributions (pX1

β1
)β1 , . . . , (pXk

βk
)βk . With the "Independent

Random Sets" approach, we define the mass distribu-
tion (denoted by νT

β1...βkαk+1 ...αn
), associated with focal sets

πT
β1...βkαk+1 ...αn

= T (xβ1

1 , . . . , x
βk

k , π
Xk+1
αk+1
, . . . , π

Xn
αn

) of T (X), by
∀ β1, . . . , βk, αk+1, . . . , αn:

νTβ1...βkαk+1 ...αn
= pX1

β1
× · · · × pXk

βk
× νXk+1
αk+1
× · · · × νXn

αn

Then, we can estimate, for all measurable sets A, PlT (A)
and BelT (A) as follows:

PlT (A) =
∑

(β1,...,βk,αk+1,...,αn);πT
β1 ...βkαk+1 ...αn

∩A,∅

νTβ1...βkαk+1 ...αn

BelT (A) =
∑

(β1,...,βk,αk+1,...,αn);πT
β1 ...βkαk+1 ...αn

⊆A,∅

νTβ1...βkαk+1...αn

It corresponds to applying a Monte-Carlo method to all
variables. For each possibility distribution, an α-cut is
independently selected. The "Independent Random Sets"
approach is a conservative counterpart to the calculus
of probabilistic variables under stochastic independence
[7, 22].

3.2.2 Casting the “hybrid” approach in the random
set setting

Suppose now the same value of α is selected in the Monte-
Carlo simulation, for all possibilistic variables. Then:
∀ β1, . . . , βk, αk+1, . . . , αn

αk+1 = · · · = αn νT
β1...βkαk+1 ...αn

= ν
Xk+1 ,...,Xn
α × pX1

β1
× · · · × pXk

βk

αk+1 , · · · , αn νT
β1...βkαk+1 ...αn

= 0

The possibility distribution πXk+1,...,Xn is characterized by
min(πXk+1 , . . . , πXn) which corresponds to nested Cartesian

products of α-cuts and νXk+1,...,Xn
αk+1

is the mass associated
with the Cartesian product πXk+1

αk+1
× · · · × π

Xn
αn

. Like in 3.1
we thus assume total dependence between focal sets asso-
ciated with possibilistic variables. Hence, if we want to
estimate PlT (A), for all measurable sets A, using the last
definition of νT

β1...βkαk+1...αn
, we deduce that:

PlT (A) =
∑

β1,...,βk

pX1
β1
× · · · × pXk

βk
× ΠT

β1...βk
(A)

where ΠT
β1...βk

are the possibility measures associated with
the joint non-interactive possibility distribution πT

β1...βk
ob-

tained by the "Hybrid" method (see Section 3.1). That
means the "Hybrid" approach and "Independent Random
Sets" approaches are equivalent when we combine only
one possibilistic variable with other probabilistic variables
.

3.2.3 "Conservative Random Sets" approach

Borrowing from [4], the idea of the "Conservative Ran-
dom Sets" approach [2] is to compute extreme upper plau-
sibility PlTmax and lower belief functions BelT

min without as-
suming any knowledge about dependencies. It yields a
linear optimization problem whose unknown is the joint
mass function. It yields the loosest possible bracketing
[BelTmin(A), PlTmax(A)] of P(T (X) ∈ A), which can be at-
tained using some feasible joint mass distribution, for any
measurable set A of interest.
For the sake of clarity, consider an example involving
three parameters x, y, z which can be represented by prob-
ability distribution, p-box or possibility distribution and
the function T : (x, y, z) 7→ T (x, y, z). Let (νx

i )i, (νyj) j

and (νzk)k be the mass distributions associated with focal
sets ([xi, xi])i, ([y

j
, y j]) j and ([z

k
, zk])k. In the "Conserva-

tive Random Sets" approach, contrary to the "Independent
Random Sets" approach where hi jk = ν

x
i × ν

y
j × ν

z
k, we

must find the mass distribution (hi jk)i jk such that PlT (A)
is maximal and BelT (A) is minimal. That means we obtain
PlTmax(A) by solving the following maximization problem:

max
∑

T ([xi,xi],[y j,y j],[zk ,zk)]∩A,∅ hi jk

∑
jk hi jk = ν

x
i ∀i∑

ik hi jk = ν
y
j ∀ j∑

i j hi jk = ν
z
k ∀k∑

i, j,k hi jk = 1

Similary, we obtain BelT
min(A) by minimizing
∑

T ([xi,xi],[y j,y j],[zk ,zk)]⊆A

hi jk

under the same constraints. The "Conservative Random
Sets" approach is a rigorous method to obtain a conserva-
tive, but attainable bracketing of the ill-known probability
P(A) for all measurable sets A when nothing about depen-
dencies between variables is assumed.



3.3 "Dependency Bounds Convolution" approach

This section describes a method that can be used to
compute extreme upper and lower cumulative distribu-
tion functions on results of probabilistic model no matter
what correlations or statistical dependencies exist among
the variables. Williamson and Downs [29] gave a nu-
merical method for computing these bounds by using
p-boxes [FX, FX], [FY , FY ] representing two ill-known
random variables X and Y, without using any informa-
tion about their joint distribution for arithmetic operations
{+,−,×,÷}. The idea is to use the Fréchet bounds :

max(FX(x)+FY(y)−1, 0) ≤ F(X,Y)(x, y) ≤ min(FX(x), FY(y))
(4)

based on the theory of copulas [26]. An important result
due to Sklar proves the existence, for any joint probabil-
ity distribution F(X,Y), of a function C, called “Copula”,
from the unit square to the unit interval, such that F(X,Y) is
completely determined by its marginals FX, FY via C, that
is, F(X,Y) = C(F(x), F(y)) = P(X ≤ x, Y ≤ y). It means
that a copula C contains all information related to depen-
dence among random variables X and Y. Formally, a two-
dimensional copula C is a mapping C : [0, 1] × [0, 1] →
[0, 1] such that

1. C(0, u) = C(u, 0) = 0 ∀ u ∈ [0, 1]
2. C(u, 1) = C(1, u) = u ∀ u ∈ [0, 1]
3. C(u2, v2) −C(u2, v1) −C(u1, v2) + C(u1, v1) ≥ 0
∀ (u1, u2, v1, v2) ∈ [0, 1]4 such that u1 ≤ u2 and v1 ≤ v2

All copulas verify, ∀ (u1, u2) ∈ [0, 1]2

max(u1 + u2 − 1, 0) ≤ C(u1, u2) ≤ min(u1, u2) (5)

corresponding to Fréchet bounds (4). Copula C :
(FX(x), FY(y)) 7→ min(FX(x), FY(y)) means Y is al-
most surely an increasing function of X. Copula C :
(FX(x), FY(y)) 7→ max(FX(x) + FY(y) − 1, 0) means Y is
almost surely a decreasing function of X.
Hence, from Fréchet bounds, extreme upper and lower cu-
mulative distribution functions of the addition of two ill-
defined random variables, for instance, are given by [29]:

FX+Y(z) = sup
x+y=z
{max(FX(x) + FY (y) − 1, 0)} (6)

FX+Y(z) = inf
x+y=z
{min(FX(x) + FY (y), 1)}. (7)

These results come from the following inequalities [29]

sup
L(x,y)=z

max(FX(x) + FY(y) − 1, 0) ≤ FL(X,Y)(z)

FL(X,Y)(z) ≤ inf
L(x,y)=z

min(FX(x) + FY (y), 1)
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Figure 2: The joint probability bounds of cumulative dis-
tribution function FL(x,y)

where L ∈ {+,−,÷,×}. Indeed (see Figure 2), ∀ (x1, y1),
(x2, y2) ∈ {(x, y)|L(x, y) = z}

max(FX(x1) + FY (y1) − 1, 0)
≤ C(FX(x1), FY(y1))
=
∫ ∫

A
dC(FX(x), FY(y))

≤
∫ ∫
{(x,y)|L(x,y)<z}

dC(FX(x), FY(y))

≤
∫ ∫

B
dC(FX(x), FY(y))

= FX(x2) + FY (y2) −C(FX(x2), FY(y2))
≤ min(FX(x2) + FY (y2), 1)

Hence, FL(X,Y)(z) is the greatest value of max(FX(x) +
FY(y) − 1, 0) where (x1, y1) ∈ {(x, y)|L(x, y) = z} and
FL(X,Y)(z) is the smallest value of min(FX(x2) + FY (y2), 1)
where (x2, y2) ∈ {(x, y)|L(x, y) = z}. Then, it is easy to de-
duce FX+Y and FX+Y (see equations 6 and 7) from FX , FY ,
FX and FY .
Ferson [21] extends these results to other operators like
min, max, log, exp and power. As in fuzzy arithmetic
(interval analysis by α-cuts), the quasi-inverses of the re-
sulting lower and upper distribution function bounds can
be calculated in terms of quasi-inverses of the upper and
lower cumulative distribution functions. They employ
lower and upper discrete approximations to the quantile
function. That is, they discretize upper and lower cumula-
tive distributions FX , FY , FX and FY into m + 1 elements
and they obtain bounds on the quantile functions F−1

X+Y and

F
−1
X+Y as follows (see Figure 3):

• F−1
X+Y ( i

m ) = min j=i...m{F−1
X ( j

m ) + F−1
Y ( i− j+m

m )}

• F
−1
X+Y ( i

m ) = max j=0...i{F
−1
X ( j

m ) + F
−1
Y ( i− j

m )}

where i varies between 0 and m. The quantile bounds are
then inverted to obtain bounds on the cumulative distribu-
tion functions.
The first obvious disadvantage of this method, although

it does not assume anything about dependencies, is that
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it does not allow to estimate probability for all measur-
able sets A (contrary to the "Conservative Random Sets"
approach) but only measurable sets as (−∞, e] or [e,∞).
Moreover, contrary to the other propagation methods, this
process cannot be applied to any multivariate functions
like semi-analytical models for instance. The next sub-
section shows another problem with this approach.

3.4 "Conservative Random Sets" versus "Dependency
Bounds Convolution"

Ferson et al. [17] show that the "Conservative Random
Sets" approach and the "Dependency Bounds Convolution"
method to propagate uncertainty converge to the same re-
sult when the domain is restricted to the positive real line,
and the output is expressed in the cumulative distributional
form. But, for more than two variables, we show with an
example that the equivalence is no longer true. When one
is faced with more than two variables, the "Dependency
Bounds Convolution " method combines the first two vari-
ables. and then combines the previous results with other
variables and so on. This process looks sound because
the weakest and the strongest copulas are associative (they
are triangular norms), but it is is questionable because the
weakest copula extended to 3 arguments is no longer a
copula [26] even if it still provides a bracketing of the ill-
known joint probability. As a consequence, this method
models impossible dependencies among random variables.
Indeed, consider three ill-defined random variables X, Y
and Z; such a combination of copulas then provides the
alleged joint probability distribution

F(X,Y,Z)(x, y, z) = max(FX(x) + FY (y) + FZ(z) − 2, 0).

To see that the joint probability F(X,Y,Z) takes into account
impossible dependence structures first obtain by projec-
tion

F(X,Y)(x, y) = lim
z→+∞

max(FX(x) + FY (y) + FZ(z) − 2, 0)

That is

F(X,Y)(x, y) = max(FX(x) + FY(y) − 1, 0) (8)

Similarly we get:

F(Y,Z)(y, z) = max(FY(y) + FZ(z) − 1, 0) (9)

F(Z,X)(z, x) = max(FX(x) + FZ(z) − 1, 0) (10)

which means Y is almost surely a decreasing function of
X, Z is almost surely a decreasing function of Y and Z is
almost surely a decreasing function of X. However, con-
ditions (8) (9) imply that Z must be almost surely an in-
creasing function of X, which is contradictory with the last
condition (10).
Example. Let X (resp. Y and Z) be an ill-known ran-
dom variable represented by a belief function such that
νX([3, 4]) = 0.5, νX([2, 5]) = 0.5 (resp. νY ([3, 5]) = 0.5,
νY ([2, 6]) = 0.5 and νZ([4, 5]) = 0.5, νZ([3, 6]) = 0.5)
and T (x, y, z) = (x + y) × z. We try to estimate a brack-
eting of P(T (X, Y, Z) ≤ e) using the "Dependency Bounds
Convolution" method and the "Conservative Random Sets"
approach. Figure 4 represents cumulative distributions de-
duced from the mass distributions of variables X, Y and
Z. Figure 5 represents the cumulative distribution of T
by applying either the "Dependency Bounds Convolution"
method or the "Conservative Random Sets" approach. We
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can observe that FT (16) = 1 whereas Plmax((−∞, 16]) =
0.75. That means there does not exist any mass distribu-
tion νT such that Pl((−∞, 16]) = 1. Indeed, suppose that
such a mass distribution exists. There are two focal el-
ements for each variable; that means that there are eight
focal elements for T :



X Y Z (X + Y) × Z νT
[3, 4] [3, 5] [4, 5] [45, 100] ν111

[3, 4] [3, 5] [3, 6] [18, 54] ν112

[3, 4] [2, 6] [4, 5] [20, 50] ν121

[3, 4] [2, 6] [3, 6] [15, 60] ν122

[2, 5] [3, 5] [4, 5] [20, 50] ν211

[2, 5] [3, 5] [3, 6] [15, 60] ν212

[2, 5] [2, 6] [4, 5] [16, 55] ν221

[2, 5] [2, 6] [3, 6] [12, 66] ν222

We compute Plmax((−∞, 16]) by solving the following
problem:

max ν122 + ν212 + ν221 + ν222

ν111 + ν112 + ν121 + ν122 = 0.5 C(1)
ν211 + ν212 + ν221 + ν222 = 0.5 C(2)
ν111 + ν112 + ν211 + ν212 = 0.5 C(3)
ν121 + ν122 + ν221 + ν222 = 0.5 C(4)
ν111 + ν121 + ν211 + ν221 = 0.5 C(5)
ν112 + ν122 + ν212 + ν222 = 0.5 C(6)∑2

i=1
∑2

j=1
∑2

k=1 νi jk = 1 C(7)

We supposed that Plmax((−∞, 16]) = 1. It means that ν122+

ν212 + ν221 + ν222 = 1. Hence, the last constraint C(7)
implies:

ν111 = 0; ν112 = 0; ν121 = 0; ν211 = 0.

The constraints C(1) and C(5) thus imply: ν122 = 0.5 and
ν221 = 0.5. Hence, ν111 + ν221 = 1, while according to
C(4), it should be equal to 0.5. So, the probability family
P(νT ) obtained from the belief function approach with
optimization is more precise than P(FT < FT ) obtained
by the "Dependency Bounds Convolution" method and
p-boxes, and the latter is clearly over pessimistic.

4 Application to soil contamination

In this Section, we apply the previous uncertainty propaga-
tion methods to a real case of soil contamination by lead on
an ironworks brownfield in the south of France. Following
an on-site investigation revealing the presence of lead in
the superficial soil at levels on the order of tens of grams
per kg of dry soil, a cleanup objective of 300 mg/kg was
established by a consulting company, based on a potential
risk assessment, taking into account the most significant
exposure pathway and the most sensitive target (direct soil
ingestion by children). The mathematical model calculat-
ing the quantity Dlead absorbed by a child living on the site
and exposed via soil ingestion is given by [16]:

Dlead =
Csoil × IRsoil × (Fiinside + Fioutside) × E f × ED

Bw × AT × 106

where

Dlead = Absorbed lead dose related
to the ingestion of soil (mg/[kg.day])

Csoil = Lead concentration in Soil (mg/kg)
IRsoil = Ingestion Rate mg soil/day
Fiindoor = Indoor Fraction

of contaminated soil ingestion (unitless)
Fioutdoor = Outdoor Fraction

of contaminated soil ingestion (unitless)
E f = Exposure Frequency (days/year)
ED = Exposure Duration (years)
Bw = Body Weight (kg)
AT = Averaging time (period over

which exposure is averaged–days)

The World Health Organization prescribed the acceptable
lead dose related to the ingestion of polluted soil to be
equal to 3.5 µg/[kg.day]. That means that after the cleanup
objective of 300 mg/kg on the site (ironworks brown-
field), calculated doses Dlead should not be larger than
3.5 µg/[kg.day]. The situation is considered acceptable
in terms of public health if calculated doses are not supe-
rior to 3.5 µg/[kg.day].
Typically, the model parameters are tainted by objec-
tive and subjective uncertainty. The cleanup objective of
Csoil=300 mg/kg of the consulting company cannot be
achieved uniformly over the entire polluted site. So, this
objective can be viewed as the mode of a distribution on
Csoil after cleanup. Moreover, Csoil values greater than 500
mg/kg are not tolerable, while values lower than 40 mg/kg
are unrealistic. To summarize, for lead concentration in
soil (Csoil) after cleanup, we consider a modal value of 300
mg/kg and a support [40,500] mg/kg. A rigorous way to
represent this knowledge is to use the triangular possibilis-
tic distribution πCsol which encodes a more precise proba-
bility family (see [1]) than the one defined by the p-box of
Ferson et al. [18] [19] such that:

FCsoil(x) =
x − 300

200
for x ∈ [300, 500] and 0 otherwise

FCsoil(x) =
x − 40
260

for x ∈ [40, 300] and 1 otherwise

Concerning the ingestion rate IRsoil (resp. the indoor
fraction ingested Fiindoor), experts say that it is sure that
the values of IRsoil are within [20, 300] (resp. of Fiindoor

are within [0.2, 0.9]) but they say that the most likely
values of IRsoil are within [50, 200] (resp. [0.5, 0.7]
for Fiindoor). This knowledge is typically represented
by the possibility distribution πIRsoil , πFiindoor defined by
support(πIRsoil)=[20, 300], core(πIRsoil)=[50, 200]={x|
πIRsoil(x) = 1} and support(πFiindoor)=[0.2, 0.9],
core(πFiindoor)=[0.5, 0.7].
For the body weight Bw, we have sufficient knowledge to
represent it by the normal distribution with mean (resp.
standard deviation) equal to 17.4 kg (resp. equal to 2.57



kg).
The child’s time budget (related to exposure frequency) is
divided into two components: 2 hours per day outdoors
and 16 hours per day indoor (experts opinion).
The outdoor contaminated soil ingestion fraction Fioutdoor

is taken as unity. Experts consider the exposure duration
ED equal to 6 years and the exposure is averaged on
6 years so AT = 2190 days. The period over which
exposure is averaged is taken as the exposure duration, as
carcinogenic effects for lead are not proven.
From this imprecise and random data, we propagate
information through the model (absorbed lead dose
Dlead related to the ingestion of soil) by means of
the four previous methods of propagation to estimate
P(Dlead ≤ threshold). Figure 6 represents the upper
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Figure 6: Upper and Lower cumulative distribu-
tions of Dlead according to the four methods of
propagation. "lP"=Lower Probability, "uP"=Upper
Probability, "DBC"="Dependency Bounds Convolution",
"IRS"="Independent Random Sets", "CRS"= "Conserva-
tive Random Sets"

and lower cumulative distribution functions of Dlead

resulting from these four methods. It enables the four
methods to be compared with the purely probabilistic
approach where one assumes all knowledge to be of
a random nature and stochastic independence between
variables (classical procedure in risk assessment). Hence
we can observe that the probability P(Dlead > 3.5) is
equal to 30% in the pure probabilistic case but the other
methods show that this probability can be much higher,
leading us to reject the hypothesis of non violation of
the tolerable threshold. The distance between upper and
lower probabilities characterizes the imprecision of result
Dlead brought by the imprecise knowledge of parameters
and by the modeling of (in)dependence enforced by
each propagation method. We also can see that the
"Dependency Bounds Convolution" approach provides the
most imprecise results, which are actually too pessimistic
from a mathematical point of view since this method
considers impossible dependencies among ill-defined

random variables represented by p-boxes. These results
show that it would be preferable to decrease the cleanup
objective of 300 mg/kg in order to reduce the upper
probability of exceeding the tolerable dose of 3.5 mg/kg.

5 Conclusion

This paper compares three techniques for the represen-
tation of imprecise subjective and objective probabilis-
tic knowledge, and four practical propagation methods
through multivariate functions. The p-box representation
reflects only a small part of the information contained in a
probability set. Using p-boxes can become very imprecise
if the distance between the lower and upper distribution is
large. A possibility distribution or a belief function is then
more precise.
All propagation methods carry their own assumptions re-
garding (in)dependence between variables. The "Hybrid"
approach, contrary to the "Independent Random Sets" ap-
proach, is not a conservative counterpart of the calculus
of independent probabilistic variables. Indeed the exten-
sion principle applied to possibility distributions involves
a dependence assumption between observers, but no de-
pendence is assumed between observed variables.
The "Dependency Bounds Convolution" can only work
with p-boxes and may produce erroneously overpes-
simistic bounds, due to a mathematical difficulty with cop-
ulas of order higher than two. On the contrary, the "Con-
servative Random Sets" approach can compute tight pes-
simistic bounds for any kind of measurable event without
making any assumption about dependence, at the expense
of solving one optimisation problem for each event and
each probability bound.
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