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Abstract

Consider a relaxed multinomial setup, in which
there may be mistakes in observing the outcomes
of the process—this is often the case in real appli-
cations. What can we say about the next outcome
if we start learning about the process in conditions
of prior ignorance? To answer this question we
extend the imprecise Dirichlet model to the case
of imperfect observations and we focus on poste-
rior predictive probabilities for the next outcome.
The results are very surprising: the posterior pre-
dictive probabilities are vacuous, irrespectively of
the amount of observations we do, and however
small is the probability of doing mistakes. In other
words, the imprecise Dirichlet model cannot help
us to learn from data when the observational mech-
anism is imperfect. This result seems to rise a seri-
ous question about the use of the imprecise Dirich-
let model for practical applications, and, more gen-
erally, about the possibility to learn from imperfect
observations under prior ignorance.

Keywords. Predictive Bayesian Inference, impre-
cise Dirichlet model, Vacuous Predictive Probabil-
ities, Imperfect Observational Mechanism.

1 Introduction

Consider the basic multinomial setup: an unknown
process produces a sequence of symbols, from a fi-
nite alphabet, in an identically and independently
distributed way. What is the probability of the next
symbol produced? Walley’s imprecise Dirichlet
model (IDM) [7] offers an appealing solution to
the predictive problem: it yields lower and upper
probabilities of the next symbol that are initially
vacuous and that converge to a precise probability
as the sequence grows. The IDM can be regarded
as a generalization of Bayesian inference to impre-
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cise probability (Sect. 2), originated by the attempt
to model prior ignorance about the process in an
objective-minded way. The IDM is an important
model as it yields credible inferences under prior
ignorance, and because the multinomial setup is an
abstraction of many important real problems. The
IDM has indeed attracted considerable attention in
the recent years; see, for example, the application
of the IDM to classification [9, 11], nonparamet-
ric inference [2], robust estimation [4], analysis of
contingency tables [3], discovery of dependency
structures [10], and game theory [6].

But in real problems there is a, perhaps very small,
probability of doing mistakes in the process of ob-
serving the sequence. It seems therefore worth re-
laxing the basic multinomial setup in order to con-
sider the occurrence of imperfect observations, as
in Section 3. We imagine a two-steps process to
this extent: a multinomial process produces so-
called ideal symbols from the alphabet, that we
cannot observe; a subsequent observational mech-
anism takes the ideal symbols and produces the
so-called actual symbols, which we do observe.
The more accurate the observational mechanism,
the more the ideal sequence will coincide with the
actual sequence, and vice versa. But in any case,
we assume that there exists a non-zero probability
of mistake: the probability that the observational
mechanism turns an ideal symbol into a different
symbol of the alphabet.

We are interested in the following problem: can we
compute the probability of the next ideal symbol,
starting in a state of prior ignorance and observing
only the actual sequence? To answer this question,
we model prior ignorance at the ideal level with
the IDM, and combine it with the imperfect obser-
vational mechanism at the actual level. The overall
model generalizes the IDM, which is recovered in



the case the probability of mistake is set to zero.

The outcome of the newly created model in Sec-
tion 3.2 is very surprising: the predictive proba-
bilities of the next ideal symbol are vacuous, irre-
spectively of the amount of symbols in the actual
sequence, and of the accuracy of the observational
mechanism! In other words, the model tells that it
is not possible to learn with prior ignorance and an
imperfect observational mechanism, no matter how
small is the probability of error—provided that it is
not zero, as in IDM. In the attempt to attack the
vacuity problem we consider a weaker model for
the observational mechanism: in Section 3.5 we
assume that the probability of mistake, rather than
being a constant, lies between 0 and 1 according to
some distribution. The situation is unchanged: the
probabilities are vacuous whatever precise distrib-
ution we choose.

This strong kind of discontinuity seems to rise a
serious question about the IDM: what is the mean-
ing of using the IDM for real problems? Indeed,
the result seems to tell us that we cannot use the
IDM as an approximation to more realistic models
that admit the possibility of an imperfect observa-
tional mechanisms, just because the transition be-
tween these and the IDM is not at all continuous.
One might say that this does not need to be a seri-
ous problem, as in the real world we are only con-
cerned with actual symbols, rather than ideal ones.
But in Section 4 it turns out that even the probabil-
ities of the next actual symbol are vacuous for any
length of the observed sequence and any accuracy
of the observational mechanism.

2 Thelmprecise Dirichlet Model

In this paper we consider an infinite population
of individuals which can be classified in & cate-
gories (or types) from the set X = {z1,..., 2}
The proportion of units of type x; is denoted by 6;
and called the chance of x;. Then, the vector of
chances 6 = (61, ...,0;) is a point in the closed
k-dimensional unit simplex®

k
©:={0=(01,....00) | Y _ 0;i=1,0<06; <1}.
i=1

We define a random variable X with values in X
which consists in drawing an individual at ran-
dom from the population. Clearly the chance that
X = x; is 0;. Our problem is to predict the prob-
ability of drawing an individual of type x; from a

1The symbol *:=’ denotes a definition.

population of unknown chances 6 after having ob-
served N independent random draws and starting
from prior ignorance. Having observed a dataset x,
we can summarize the observation with the counts
a = (ay,...,ar) where a; is the number of indi-
viduals of type x; observed in the dataset x and
with % a; = N. For given 6, the probability of
observing a dataset x with counts a given @ is equal
to P(x|0) = 67" ---60;*. In this section we as-
sume that each individual in the population is per-
fectly observable, i.e., the observer can determine
the exact category of each individual without com-
mitting mistakes, and we solve our problem using
the standard imprecise Dirichlet model.

2.1 Bayesian Inference and Dirichlet Prior
Density

In the Bayesian setting we learn from observed
data using Bayes rule, which is formulated as fol-
lows. Consider a dataset x and the unknown
chances 0. Then

p(fx) = (1)

provided that
P(x) = /@ P(x|9)p(8)d6 # 0,

where p(#) is some density measure on ©. The
probability measure P(x|¢) is called the likeli-
hood, p(0) is called the prior density and p(f|x)
is called the posterior density. Bayesian inference
enables us to update our confidence on @ given the
data by representing it as P(0 | x). Bayesian infer-
ence relies on the specification of a prior density
on ©. A common choice of prior in the multino-
mial setting is the Dirichlet density measure that is
defined as follows.

Definition 1. The Dirichlet density dir (s, t) is de-
fined on the closed k-dimensional simplex © and is
given by the expression

k
. F(s) H 0fti_17
[[i— D(sti) i1

where s is a positive real number, I" is the Gamma
functionand t = (¢1,...,tx) € 7, where 7 is the
open k-dimensional simplex

dir(s,t)(0) :==

k
To={t=(tr,....tx)| D tr=1,0<t; <1}.
j=1



We recall first some important properties of Dirich-
let densities.

Lemma 1 (First moment). The first moments of
a dir(s,t) density are given by E(6;) = t;, i €
{1,...,k}.

Proof. See [5]. O

Remark 1. In a multinomial setting we have

Pa) = [ P(o:10) - p(6)as -
:/&W@W=ﬂ®-
©
In particular, if p(0) is a dir(s, t) density, P(x;) =

Proposition 1. Consider a dataset x with counts

a=(a1,...,ar). Then the following equality
holds
k
H 6;1'7 -dir(s,t) =
j=1

I T st +i = 1)
Hi]\;1(5+i -1)

- dir(s$*,t%),

where s := N + s and £% := %" When a; =
Oweset [T0_, (stj+i—1):=1,foreach0 < t; <

1, by definition.

Remark 2. Using a dir(s,t) density measure as
prior in a Bayesian learning problem with multino-
mial data we have p(0) = dir(s,t) and

k
P(x|0) =[] 65 )
j=1

According to Proposition 1, the posterior density is
then given by P(0|x) = dir(s*,t*) and therefore

a; + st;
N+s’

Play %) = £ = ©)

Moreover, comparing (1) with the equality of
Proposition 1, we conclude that

k a; .
Hj:l [T, (st; +i—1)

P(x) =
) Hij\;(s“‘i_l)

(4)

2.2 The Imprecise Dirichlet Model

The Imprecise Dirichlet Model (IDM) (see [1] and
[7]) is a model that generalizes Bayesian learn-
ing from multinomial data to the case when there
is prior near-ignorance about 6. Prior ignorance
about 0 is modeled using the set of all the Dirichlet
densities dir (s, t) for a fixed s and all t in 7; that
is, the IDM uses a set of prior densities instead of a
single prior. The probability of each category x; a
priori is vacuous, i.e., P(z;) € [infr t;,sups t;] =
[0, 1]. Prior ignorance is therefore modeled by as-
signing vacuous prior probabilities to each cate-
gory of X'. For each prior density one calculates,
using Bayes rule, a posterior density and obtains,
taking into accounts the whole set of priors, a set
of posteriors. Let now s > 0 be given and consider
the set of prior densities M, := {dir(s,t)|t €
7T}. Suppose that we observe the dataset x with
corresponding counts a = (aq, ..., ax). Then, the
set of resulting posterior densities follows from
Proposition 1 and is given by

Mpyys = {dir(N + 5,t%)

a;+ st;
= L teT .
IT Nys '€ }

Definition 2. Given a set of probability measures
P, the upper probability P is given by P(-) :=
suppep P(+), the lower probability P by P(-) :=
infpep P()

Remark 3. The upper and lower posterior predic-
tive probabilities of a category xz; in the IDM are
found letting t; — 1, resp. ¢; — 0, and are given

by P(z;|x) = §5 and Plai|x) = i for
each .

Remark 4. The IDM with & = 2 is usually called
Imprecise Beta Model (IBM), because the Dirich-

let densities with & = 2 are beta densities (see [1]
and [8]).

3 Thelmprecise Dirichlet Model with
Imperfect Observational
M echanism

The standard IDM was originally defined for per-
fect observational mechanisms. But, in practice,
there is always a (perhaps small) probability of
making mistakes during the observational process.
Often, if this probability is small, one assumes that
the data are perfectly observable in order to use
a simple model; doing so, one implicitly assumes
that there is a sort of continuity between models
with perfectly observable data and models with



small probability of errors in the observations. In
this section, our aim is to generalize the IDM to
the case of imperfect observational mechanisms,
and construct posterior predictive probabilities in
order to verify if the implicit assumption described
above is acceptable in practice. We model our im-
perfect observational mechanism with a two-step
model. In the first step, a random variable X is gen-
erated with chances 6. In the second step, given the
value of X, a second multinomial random variable
O with values in X" is generated from X. We define
the chances \;; := P(O = z; | X = z;). All such
chances can be collected in a & x k matrix, called
the emission matrix,

A= ) (5)

Then, the chances £ = (&4, ...
variable O are given by

, &) of the random

&= Z Aij - 0. (6)

Matrix A is stochastic, that is in each column the
elements sum to one. We assume that each row of
the emission matrix has at least an element differ-
ent from zero; in the opposite case we could de-
fine O on a strict subset of X’. Consider a dataset
o generated by the above two-step model. For
each dataset o generated at the actual level and
composed by realizations of the random variable
O, there exists at the ideal level an unobservable
dataset x, of realizations of X, such that o was
generated from x by the observational mechanism.
Knowing x, makes o not to depend on the chances
# of X. We can therefore summarize the two step
model with the independence assumption

p(o,x,0) = Po|x)P(x[0)p(d).  (7)

3.1 The IDM with Imperfect Observational
Mechanism

We use now the above two-step model to gener-
alize the IDM to the case of imperfect observa-
tional mechanism. We begin calculating the pos-
terior predictive probabilities for a given prior.

Lemma 2. Suppose that we have observed a
dataset o and we construct the posterior predictive
probabilities p(X = z; | 0) using Bayes rule and a

prior dir(s,t). Then

aX+st;
> xexn Plo|x) - P(x) - =

P(X=ux;]0) = Y xexn Plo]x) - P(x)
(8)

Proof.

p(f]o) =

S p(0.x0) =

xeXN

= Y pIx.0)-P

xexnN

™

= > 0%
xeXN

X|9 dzr(s t) Plo|x)-P(x) _
= Z (o) =

(x]o) =

P(x]|o) =

xeXN

P(x|0) - dir(s,t)

- %: P(o) -

_ > xexn Plo]x) - P(x|0) - dir(s,t)
erXN Plo]x) - P(x)

O\X

This is possible if P(x) > 0and P(o) > 0. Since
t; > 0forall jand s > 0 it follows from (4) that
P(x) > 0. Because all the rows of A are assumed
to have at least one element different from zero, for
each x; there exists at least one j such that A;; # 0,
therefore there exists at least one x with P(o | x) #
0 and, because P(x) > 0 for each x it follows that
P(o) > 0. From Remark 2 we have P(x|0) -
dir(s,t) = P(x) - dir(s*, t*). Therefore,

erXN P(o|x) - P(x) - dir(s*,t%)
> oxean Plo]x) - P(x) ’

which is a convex combination of Dirichlet density
measures, and, using (3), we obtain

P(0o) =

P(X:$i|0>:

_ Jobi > owexn Plo]x) - P(x) - dir(s*,t*)df

2xexn Plo]x) - P(x)

~ Yyexn P(o]x) - P(x) - [g 0 - dir(s*,t*)df

- Yexn Plo]x) - P(x)
() Lxexr Plo|x) - P(x) -
Yexn Plo]x) - P(x)




If we consider now each prior density in the set
M and we calculate the posterior predictive prob-
abilities P(X = z; | o) using (8) we obtain a gen-
eralization of the IDM to the case of imperfect ob-
servational mechanism. It is interesting to remark
that, in this case, the set of posterior densities con-
sists of convex combinations of Dirichlet density
measures and not of Dirichlet densities as in the
IDM with perfect observational mechanism.

3.2 Vacuous Predictive Probabilities

In this section we study the behavior of the above
generalization of the IDM in order to compare it
with the standard IDM. The results are surprising:
we show that there is a drastic discontinuity be-
tween the results obtained with the IDM with per-
fect observational mechanism and those obtained
assuming an imperfect observational mechanism.
In particular, the IDM with an emission matrix
without zero elements produces vacuous predictive
probabilities for each category in X'. This effect
is observed also if the elements not on the diago-
nal of A are very small. It follows that, using a
model with perfect observational mechanism in or-
der to approximate a model with imperfect obser-
vational mechanism but very small probability of
errors, does not seem to be justifiable from a the-
oretical point of view. Our results are summarized
by the following theorem.

Theorem 1. Assume that we have observed a
dataset o with counts n = (ny,...,n,) and that
the observational mechanism is characterized by
an emission matrix A. Then, for each ¢ ¢
{1,...,k}, the following results hold.

1. If all the elements of A are nonzero, then the
IDM produces vacuous predictive probabili-
ties, i.e, P(X = z;]o0) = 1 and P(X =
x;]0) = 0.

2. The IDM produces P(X = xz;|0) < 1, iff
35 € {1,...,k},suchthatn; > 0and \;; =
0.

3. The IDM produces P(X = z;|0) > 0, iff
35 € {1,...,k}, suchthat n; > 0, \j; # 0
and \;, = 0 for each r # 1.

Proof. 1. Assume that all the elements of
A are nonzero. We show that in this
case lim;, .1 P(X = =z;]o) = 1 and
limg, o P(X = x;]0) = 0, in other words

P(X =x;]0) = land P(X = ;|0) = 0.
From (8) we know that

tlilinl PX=uz;|0)=

i Sacan Plo]x) - Px) - R
T Scaw Plolx) Px)

Because all the elements of A are nonzero,
it follows immediately that P(o|x) # 0 for
each o and each x in XV, Define X' as the
dataset with X = N and a¥ = 0 for each
j # i. We show that lim;,_,; P(x) = 0 for
eachx € XN\ {x'}. Actually, the numerator
of (4) is a product of terms

x
J

[t +r-1). 9)

r=1

a

If ¥ = 0, then (9) is equal to one by defini-
tion. Otherwise, if a > 0 fora j # i, then
(9) is equal to

stj-...-(stj +aj —1). (10)

Ift; — 1,sincet € 7, we have t; — 0 for
each j # 4. Because of the first term of the
product (10), it follows that (10) tends to zero
ast; — 1andthus P(x) — 0. At the other
side we have

N
) t; -1
fiml ot [ (s+5—1)

It follows that

Jim P(X = z;]0) ¥

ay+st;

®) iy 2xexy PlO]X) PO T
Lol Y ean Plo]x) - P(x)

L Plofx) 1.t
ti—1 P(o|x%) -1

a® + st; N+

— lim % —
trilgll N+ s N+ s

We calculate now lim;, .o P(X = z; |0). In
this case all the datasets in X with aX > 0
have lim;, o P(x) = 0, because limy, ¢ st;-

- (a¥ + st; — 1) = 0. Assume for sim-
plicity that ¢; 4 0 for each j # i, then



lim;, o P(x) # 0 for each x € XY with
a¥ = 0. It follows that

tlilinOP(X =uz;|0) =

S e axmo P(0]%) - P(x) - G
S vexvanmo PO[X) P(x)
(11)

and because, with a¥ = 0,

ay + st; _0—|—8-0_0

li
1m N+5

t;—0 N +s

)

we obtain lim;, .o P(X = z;|0) = 0.

2. If there exists j, such that A;; = 0, then it is
impossible to observe O = z; iIf X = ;. It
follows, because n; > 0, that P(o|X") = 0.
With P(o|x’) = 0, we show that P(X =
xz;|o) < 1 foreach t € 7T, in particular
lim, 1 P(z;]o) < 1. Actually, for each

—3 a;‘-}-st,;
x # X' and each t € 7, we have s <

ay+s N+s _
s < N = 1_, and (8) becomes thus a
convex sum of fractions smaller than 1, and is

therefore smaller than 1.

3. If there exists j such that n; > 0, A;; # 0
and \;,, = 0 for each r # ¢, then P(o|x) #
0 < a¥ > 0. Actually, in this case, we have
P(X = 2;|0 = z;) = 1 and it is therefore
impossible that n; > 0 if a; = 0. From (8) it
follows that

P(X=;|o0) =

ay +st;
ZXGXN:G,?;>O P(O | X) : P(X) " "N+s
erxN:a;<>o P(o|x) - P(x) 7

which is a convex combination of terms
LA > > S0 = 0, and is there-
fore greater than O for each t € 7, in partic-
ular for t; — 0. If the condition above about
the emission matrix is not satisfied, then for
each j with n; > 0 there exists an r, such
that \;,. # 0 and r # 4. Therefore it is pos-
sible to construct a dataset x substituting z;
with . in o for each j with n; > 0, such that
P(o|x) # 0and aF = 0. It follows from
(11) that P(z; |o) = 0.

Corollary 1. Assume that A has non-zero elements
on the diagonal. Then the IDM produces non-
vacuous predictive probabilities for each category,
iff A = I, i.e., in the case described by Walley in

[7].

Proof. Since the elements on the diagonal of A are
non-zero, the condition of the third part of The-
orem 1 is satisfied only if \;,, = 0 for each 7 and
each r # 4. It follows that the elements on the diag-
onal are the unique elements different from 0, and
because A is stochastic, \j1 = ... = A\, = 1. O

3.3 Examples

We illustrate the results with two examples in the
binary case.

Example 1. Consider a situation with k = 2, s =
2, N = 2 and an emission matrix

1—¢ €
AE::< - 1_€>, (12)

where ¢ > 0. Suppose that we have observed
the dataset o = (x1, 1) and therefore the count
n = (2,0). The probabilities of the observed
dataset given the different possible datasets of A2
are given by

P(o|(z1,71))=(1—¢)-(1—¢)>0
Po|(z1,22)) =(1—€)-€>0
P(o|(z2,71))=(1—¢)-e>0
P(o|(zg,22)) =€-e>0

Using (8), the posterior probability P(z;|o) is
given by

P(X =z1l0) =
- ((1 —e)-(1—e) - sty(1+st1) - 2;:21
2. (1—e)-c- st sts- 1;;?
+e-e-sty-(1+ sta) - 021821) :

-((1—€)~(1—€)~8t1(1+8t1)+

2. (1—¢)-c- sty - stat

—1
+E'€~St2'(1+8t2) ) .

It follows that

. (1-¢)?-s(1+5)
lim P(X = = =1
tllgll ( .1?1'0) ( _ 5)2 . 8(1 I S) )

and
2
. s(1 .
lim P(X = 21]0) = st 0,
1*}

e2-s(1+s)



implying
P(X =m]0) =0, P(X =x1]o) = 1.

The same result holds for P(X = z3|0).

Remark 5. The result of Example 1 holds for each
positive, even very small, value of e. Withe = 0
we obtain A = I, therefore

P(X = aifo) = S,
P(X = z2]0) = O;:f,
and the same o yields
?(X:xﬂo):%:l,
PX=u=x1]0)= % = 0.5,
P(X =u3]0) = % — 0.5,
B(X:x2|o):%:0.

This makes it clear that there is a strong kind of
discontinuity between the result for A = I and the
results for A = A, even for very small .

Example 2. Suppose that we have observed a
dataset o with counts n = (12,23) and assume
that the emission matrix is

0.8 0.2
A= ( 0.2 038 ) ’
Figure 1 displays the results for P(X = z1]o) ob-
tained with the IDM for s = 2. It is interesting
to remark that the problem of vacuous probabili-
ties arises very near the boundaries of 7. In the
first plot,where the function is plotted in the in-
terval t; € [0,1], it seems that P(X = x1]o) is
about 0.34. But if we look at the second plot, where
the function is plotted more precisely in the inter-

val t; € [0.99999, 1] we see clearly that P(X =
x1]0) = 1 as confirmed by theoretical results.

3.4 Discussion

The results stated in Theorem 1 can be explained
in an intuitive way. To understand the meaning
of Statement 2 of Theorem 1, consider an ob-
server with a unique extreme prior density p(6) =

L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t1

0.9

0.8

0.7F

0.6

05F

0.4

=)
w

=
©

9999

Figure 1: The function P(X = z4|o) for¢; € [0, 1]
and for t; € [0.99999, 1].

dir(s,t), such that s > 0 and t; — 1 for an
i € {1,...,k}. The observer believes a priori that
the population is formed (almost) completely by
individuals of category x;. If he observes an in-
dividual of category z; and \;; # 0, he will tend
to believe that the individual observed is actually
of category xz; and that there was a mistake in the
observational mechanism. Only if A;; = 0 he has
to rationally realize that observing something dif-
ferent from x; can only be consistent with a modi-
fication of his strong prior beliefs.

To understand the meaning of Statement 3 of Theo-
rem 1, consider now an observer with ¢; — 0. Such
an observer believes a priori that there are almost
no individuals of category z; in the population. If
he observes an individual of category x;, he will
believe that the actual category is another category
xjsuchthatt; > 0and A;; > 0. The observer can-
not rationally believe that X = x;, only if A\;; =0



for all j £ 4. Similarly, if there exists a j, such that
n; >0, Aj; # 0and A, = 0 for all » # ¢, then
observing O = x; we know for sure that X = x;.

When letting the prior density of an observer con-
verge to a degenerate one, the model with imper-
fect observational mechanism produces trivial re-
sults because of the degeneration in the behavior
of the observer. Such a feature arises only with ex-
treme prior densities. To avoid vacuous inferences
it would be sufficient to restrict the set of prior den-
sities closing the simplex 7" in a way to exclude
these degenerate priors. However, this is not com-
patible with the idea of prior ignorance, which a
priori should lead to

PX=z)=0, PX=uz)=1,

foreach:=1,... k.

3.5 The Case of Non-Deterministic Emission
Matrix

Up to this point we have assumed an observational
mechanism with known and constant emission ma-
trix. In this section, in order to generalize Theo-
rem 1, we study in detail the behavior of the IDM
when the emission matrix is not deterministic and
changes over time. We show that the IDM pro-
duces also in this case vacuous predictive proba-
bilities. We prove firstly some results about the im-
precise Beta model, and then extend the results to
the IDM.

Corollary 2. The IBM with observational mech-
anism defined by the emission matrix (12), where
e # 0, produces vacuous probabilities.

Proof. This is a particular case of Theorem 1. [

Now we allow the observational mechanism to
vary over time, we obtain however the same result:

Theorem 2. The IBM with observational mecha-
nism for the i-th observation defined by the emis-
sion matrix

].—Ei E;
A< ., 1_@), (13)

where ¢; # 0 for each i € {1,..., N}, produces
vacuous probabilities.

Proof. The proof is equal to the proof of The-
orem 1, except for the terms P(o|x) that con-
tain e1,...,ex instead of a single .  With
€1,...,enx # 0, P(o|x) # 0 for each o and x in
XN and therefore we obtain the same results.  [J

Lemma 3 (Lebesgue Theorem). Let {f, } be a se-
ries of functions on the domain A such that f,, — f
pointwise. If for each n we have |f,,(z)| < ¢(x),
and [, ¢(x)dx < oo, then

lim Afn(x)dx:/Af(:c)dac.

n—00

In the following theorem we allow the emission
matrices to be non-deterministic and we summa-
rize our knowledge about <; with a continuous den-
sity measure. We obtain once more the same result.

Theorem 3. The IBM with observational mecha-
nism for the i-th observation defined by the emis-
sion matrix (13) , where € := (e1,...,en) is dis-
tributed according to a continuous density f (<) de-
fined on [0, 1]V, produces vacuous predictive prob-
abilities.

Proof. We know from Theorem 2 that, given
€1,...,n # 0, we have lim;, ,; P(X =
z1]0,e) = 1, and limy, 1 P(X = x2]0,¢) =
0.We have

lim P(X =z1]0) =

t1—1

= lim / P(X =uz1|0,¢) - f(e)de.
[0,1]¥

t1—>1

Furthermore P(X = z;|o,¢) - f(e) < f(e), for
any j,e, o where f[o,uN f(e)de = 1. Because of
the continuity of f we know that P(s; # 0) =1
for each 4. Applying Lemma 3 we conclude that

lim P(X=uz1]0) =

t1—1

= lim
=t oy

B /[o 1N tlligl P(X =x1]0,¢) f(e)de =

:/ 1- f(e)de =1,
[0,1)¥

PX==x1|0,¢) - f(e)de =

and, similarly,
lim P(X =xz3|0) =0.
t1—1
O

Theorem 3 can be easily generalized to the k-
dimensional case. Define the set S¥** of k x



k stochastic matrices. Assume that N observa-
tions are characterized by N emission matrices
Ay,...,An € S¥¥k Define A := (Aq,...,AN).
The following theorem holds.

Theorem 4. If A is distributed according to a
continuous distribution function f(A) defined on
(Sk>*k)N "then the IDM produces vacuous predic-
tive probabilities.

The proof is very similar to the proof of Theorem
3 and is omitted.

4 TheActual Level

One might say that the problem of vacuous pre-
dictive probabilities for the ideal symbols could be
avoided considering only the actual symbols and
applying therefore the standard IDM at the actual
level. In fact the random variable O, defined in
Section 3, is perfectly observable by definition.
Therefore, having observed a dataset o, apparently
it should be possible to produce useful inferences
on the chances £ = (&1,...,&) of O using the
standard IDM. Assuming the emission matrix A to
be given, it would then be possible to reconstruct
the chances 6 = (64, ...,0x) using £ and A. In par-
ticular, from (6), it follows that ¢ = A - 0. If A'is
a non-singular matrix, we have § = A=1 . ¢, In
this section we show why the approach described
above does not work. We restrict the discussion for
simplicity to the binary case (k = 2) with emission
matrix (12) and ¢ # 0.5. Consider the chances
6 = (61, 06,) of the unobservable random variable
X and the chances £ = (&1, &5) of the observable
random variable O. Since the matrix (12) with
e # 0.5 is non-singular, we can reconstruct the
values of @ starting from the values of £. We have
& = (1 — 8)91 +ebrand & = (1 — 8)92 + eb1.
For simplicity we assume in the calculations that
€ < 0.5, such that 1 — 2¢ > 0. All results are valid
also for 0.5 < ¢ < 1. Because 6, + 65 = 1, we
have & = (1 — 2¢)0; +¢,i=1,2,and
&i—¢

;= : 14
0 = - (14)

It follows that

E() —¢
E(0;) = —/———. 1
(0:) = = (15)
4.1 Inference on O ignoring the Emission
Matrix

We follow the approach described above in order
to show that meaningless results are produced. In

particular we apply the standard IBM at the actual
level disregarding the fact that O is produced from
X by the observational mechanism. Consider an
observed dataset o with counts n = (ny,ns) and
length N = ny + ny. Applying the standard IBM
we obtain

N
PO = % = - )
P(O =i]0) = 57—
= n; +s
P(O=u2x;]0) = .

(0 =uilo)= 3

Now we use (15) to construct P(X = ;| o) and
P(X = ;| 0), we obtain

. _ n;—¢e(N+s)
PR =wzilo) =y ya—2s)
n;i+s—¢e(N+s)
(N +s)(1—2¢) °

P(X =u;|0) =

It is easy to see that, if n; < (N + s), then
P(X =2z;]0) < 0and, if n; +s < (N + s),
then P(X = x; | o) < 0. Therefore this approach
produces meaningless results in general.

Example 3. Suppose that we have observed the
dataset o with counts n; = 0 and ny, = 10 and
that our observational mechanism is characterized
by (12) with ¢ = 0.2. Applying the standard IBM
with s = 2 at the actual level we obtain at the ideal
level,

P(X =21 |0) = —0.05,

P(X = 25| 0) = 1.05.

4.2 Inference on O considering the Emission
Matrix

What is the problem of the approach described
in Section 4.1? The problem is the following:
we know that E(¢;) € [0,1] and E(&) = (1 —
2¢)E(6;) + ¢, it follows immediately that E(&;) €
[e,1 — ¢]. But if we use the standard IBM to make
inference on ¢ we are implicitly assuming that, a
priori, E(¢; € [0,1] and therefore we are doing
a wrong assumption. If we model our knowledge
about 0 using a beta(s, t) density, then our knowl-
edge about ¢ is modeled by a scaled beta density
on the interval [e, 1 — ¢]. In fact, substituting (14)
in the beta(s, t) density for 6, since df = %5,
we obtain for £ the density

C gl — e Stl—l 52 — ¢ Stz—l (16)
1—2e\1—-2¢ 1—2¢ ’




where C' = % We call this density

scaled beta density. The first moments of a scaled
beta density are given by

E(6;)=(1-2e)t; +e. (17)

To be consistent with the given data-generating
process, the IBM on ¢ should be performed using,
as set of prior densities, the set of all beta densities
scaled on [e,1 — €] with t € 7 and not the stan-
dard beta densities used in the IBM. In this way we
assume a priori that £1, &5 € [¢,1 — ¢]. Butin this
case the following theorem holds.

Theorem 5. The IBM on &, with, as set of prior
densities, the set of all scaled beta densities de-
scribed above, produces vacuous? predictive prob-
abilities.

The complete proof is rather technical and is omit-
ted. We sketch briefly the main idea of the proof.
The effect observed in this case is very similar to
the effect observed in the proof of Theorem 1. The
likelihood function in this case is given by

2
Plo|¢) =[]&"
=1

but, because &; € [e,1 — €], the likelihood func-
tion is strictly positive for each o. Choosing ex-
treme values for the parameters of the prior, the
likelihood is unable to reduce this value because it
cannot tend to zero, and therefore we obtain also
extreme posterior predictive probabilities.

5 Conclusions

In this paper we have described the behavior of
the imprecise Dirichlet model when the observa-
tions are nor perfect. We have modeled a situation
characterized by an imperfect observational mech-
anism and prior near ignorance, using a two step
process. We have shown, in Sections 3 and 4, that
the IDM produces in general, both at the ideal and
actual levels, vacuous predictive probabilities, also
for very small probability of errors. Vacuous pre-
dictive probabilities are not produced only for very
particular emission matrices A. There are some in-
teresting questions arising from the results, in par-
ticular about the application of the IDM in prac-
tice, the assumptions on the observational mecha-
nism and more generally about the possibility of

2Note that we are abusing terminology here, as the predic-
tive upper and lower prior and posterior probabilities are iden-
tical, but not equal to 1 and 0.

learning with prior ignorance and imperfect obser-
vations.

1. In the light of our results, a person that uses
the IDM in real applications can produce non-
vacuous predictive probabilities only if he
assumes a perfect observational mechanism.
But in practice this assumption seems not to
be tenable: we can never exclude the possi-
bility of an error in the observational mecha-
nism. How can we justify using the IDM for
practical problems?

2. The behavior observed in the case of imper-
fect observations for the imprecise Dirichlet
model seems not to be strictly related to its
particular structure. The suspicion emerges,
that the behavior observed by the IDM is only
a particular case of a more general phenom-
enon concerning the inference models with
prior ignorance and imperfect observations. Is
it really possible to learn something, starting
from prior ignorance and with imperfect ob-
servations?
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