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Abstract

When considering sampling models described by a distri-
bution from an exponential family, it is possible to create
two types of imprecise probability models. One is based
on the corresponding conjugate distribution and the other
on the corresponding predictive distribution. In this paper,
we show how these types of models can be constructed for
any (regular, linear, canonical) exponential family, suchas
the centered normal distribution.

To illustrate the possible use of such models, we take a
look at credal classification. We show that they are very
natural and potentially promising candidates for descri-
bing the attributes of a credal classifier, also in the case
of continuous attributes.

Keywords. Exponential family, Imprecise probability mo-
dels, Inference, Conjugate analysis, Naive credal classi-
fier.

1 Introduction

The imprecise Dirichlet model [11] and the imprecise
Dirichlet-Multinomial model [13] were introduced as im-
precise probability models for making inferences from ca-
tegorical data. These models have two features of interest.
They are elicited using i.i.d. samples and the parameters of
the distributions they are based upon, correspond to some
sort of average sample. This last feature allows for impre-
cision by making a particular use of pseudocounts.

The basis for these features is not only present in the ca-
se of categorical data, but also in other common sampling
models, such as normal sampling. In fact, it is possible
to construct similar imprecise probability models for sam-
pling from a distribution that belongs to an exponential
family. This is the main theme of this paper. So we start
by introducing the exponential families of distributions in
Section 2. In Section 3 we show how to construct the cor-
responding imprecise probability models.

The underlying ideas of the development in these two sec-
tions are the following:

• We restrict ourselves to nicely behaving sampling
models, namely those described by exponential fa-
milies of distributions. (Section 2.1)

• We wish to make assessments about the parameters
of such a sampling model and update these assess-
ments in the light of new information. For this, we
use conjugate distributions, so that the prior and pos-
terior (obtained after updating the prior) belong to the
same class. The general expression for the conjugate
can be given. (Section 2.2)

• We also wish to make predictive statements about fu-
ture samples. A predictive distribution can easily be
given using the expression of the exponential family
and its conjugate. (Section 2.3)

• Lack of specific prior information leads to the use of
imprecise probability models.

• Both the conjugate and the predictive distribution are
parameterized by: (Section 3.1)

(i) a parametery that can be made to vary in a set
Y (which initially, before updating, is chosen to
reflect the prior information), producing a cohe-
rent lower prevision by using the lower envelope
theorem;

(ii) a parametern acting like sample counts, whose
initially chosen value (pseudocounts) determi-
nes how fast the imprecision is reduced by up-
dating.

The imprecise Dirichlet model can be used for con-
structing the naive credal classifier [14], which does a clas-
sification on the basis of categorical (discrete) attributes.
Using the models we introduce in this paper, we show in
Section 4 that the naive credal classifier can be extended
to allow for continuous attributes.



2 Exponential families

Let us give a summary of the relevant theory about ex-
ponential families. As this is only a partial overview, we
refer to the literature [7, 5, 1] for more detailed informati-
on. The theoretical exposition is interspersed with a sim-
ple but representative example, illustrating the theoretical
concepts we introduce.

2.1 An exponential family

We look at sampling models where i.i.d. samples of a
random variable (or vector)X are taken from a sample
spaceX that is distributed according to anexponential fa-
mily.1 Such a distribution can be defined by giving its pro-
bability (density or mass) function

Ef(x |ψ) = a(x) exp(〈ψ, τ(x)〉 − b(ψ)), x ∈ X. (1)

In this expression,τ : X → T is a so-calledsufficient sta-
tistic of X (more about this in Section 2.4.1) andψ ∈ Ψ is
a so-calledcanonical parameter. BothT andΨ are (sub-
sets of) finite-dimensional real vector spaces and〈·, ·〉 is a
scalar product between elements of these subsets. Parti-
cular to each family are the functionsa : X → R+ and
b : Ψ→ R.2

As an example, we look at the centered normal distributi-
on. This is a relatively simple case, but the calculations are
still representative of what is necessary for other families.
To obtain the form of Equation(1) we rewrite its classical
probability density function:

N(x |0, σ) =
1
√

2πσ
exp(− x2

2σ2
)

(with x ∈ R = X, σ ∈ R+)

=
1
√

2π
exp(− 1

2σ2
x2 − ln(σ))

=
1
√

2π
exp(ψτ(x) +

1
2

ln(−2ψ))

(with τ(x) = x2 ∈ R+0 = T , ψ = − 1
2σ2
∈ R− = Ψ)

We can see that for this example, the scalar product is an
algebraic product,a = 1/

√
2π, andb(ψ) = − ln(−2ψ)/2.

A nice property of these distributions is thatP(τ |ψ) = ∇b.
Here, we introduced our notation for the linear prevision
(expectation) associated with the distribution considered.
It is defined as follows:

P( f |ψ) =
∫

X
Ef(· |ψ) f ,

1To be more precise and to follow the nomenclature in the literature
[7, 1], we should say:regular, linear, canonical exponential family.

2Notation:R+ is the set of strictly positive reals. Further on, we use
R
+

0 , the set of nonnegative reals, andN0, the set of nonnegative integers.

where
∫

X stands for integration or summation over the spa-
ceX, and f is an element ofL(X), the set of measurable
gambles (bounded functions) onX. (Note: we use similar
terminology and notation further on.)

In our example,P(X2 |ψ) = ∇b = −1/2ψ, which is (evi-
dently) equal to the varianceσ2 of the centered normal
distribution.

2.2 The conjugate distribution

When reinterpreting the probability function in Equati-
on (1) as a likelihood function

Lx : Ψ→ R+ : ψ→ Ef(x |ψ),

we can define thecorresponding conjugate distribution[5,
1] by giving its probability density function

CEf(ψ |n, y) = c(n, y) exp(n
[〈ψ, y〉 − b(ψ)

]

), ψ ∈ Ψ. (2)

There are two parameters,n andy. The first,n ∈ R+, can
be interpreted as a number of counts (possibly including
some so-calledpseudocounts). The other,y ∈ Y, corres-
ponds to an average sufficient statistic, so it is natural that
Y is the convex hull co(T ) of T without—for technical
reasons—the border. The functionc represents a normali-
zation factor.

A prior distribution with densityCEf(· |n, y) can beup-
datedafter observing a samplex. This gives aposterior
distribution with densityp(· |n, y, x) ∝ CEf(· |n, y)Lx. This
posterior’s density is equal toCEf(· |n+1, ny+τ(x)

n+1 ) and thus
a member of the same class as the prior. This property is
calledconjugacy.

We now have enough information to find the conjugate dis-
tribution for our example. FromT = R+0 we derive that
Y = R+. To determine the normalization functionc, we
transformΨ such thatψ is mapped to the so-called preci-
sionλ = 1

σ2 = −2ψ:

CEf(ψ |n, y)dψ = c(n, y) exp(n

[

−λ
2

y+
1
2

ln(λ)

]

)
∥

∥

∥

∥

∥

dψ
dλ

∥

∥

∥

∥

∥

dλ

=
1
2

c(n, y)λ
n
2 exp(−ny

2
λ)dλ

∝ Ga(λ | n+ 2
2

,
ny
2

)dλ.

This allows us to use the normalization factorβα/Γ(α) of
the probability density functionGa(· |α, β) of the gamma
distribution to find

c(n, y) = 2

[

ny
2

]
n+2

2

Γ( n+2
2 )

,

whereΓ is the gamma function.



Also illustrated in the above example is the following ge-
neral idea. By applying a transformation to the parameter
spaceΨ that mapsψ to an element of the classical parame-
ter space of the exponential family considered, the conju-
gate can usually be written in terms of well-known density
functions. Besides helping interpretation, this also leads to
an easy way of determining the normalization functionc.

A nice property of the conjugate previsionPC(· |n, y) on
L(Ψ) associated with a conjugate distribution, is that
PC(∇b |n, y) = y. This implies thatPC(P(τ |Ψ) |n, y) =
y—whereP(· |Ψ) is the function that mapsψ to P(· |ψ)—
allowing us to give an interpretation toy.

For our example, the prevision of the variance—which is
clearly of interest for inference problems—can now be ea-
sily determined: PC(P(τ |Ψ) |n, y) = PC(σ2 |n, y) = y.
This tells us thaty can be interpreted as a variance.

2.3 The predictive distribution

Using the conjugate distribution, we can also derive the
corresponding predictive distribution[1]. Its probability
function is given by

PEf(x |n, y) =
∫

Ψ

CEf(· |n, y)Lx =
c(n, y)a(x)

c(n+ 1, ny+τ(x)
n+1 )

, x ∈ X.

(3)

The predictive prevision associated with the predictive dis-
tribution isPP(· |n, y) onL(X).

Combining the results of the previous fragments of our
example, we can write down the probability density func-
tion of the predictive distribution,

PEf(x |n, y) =
1
√
π

Γ( n+3
2 )

Γ( n+2
2 )

[

ny
]

n+2
2

[

ny+ x2
]

n+3
2

.

2.4 Remarks

2.4.1 Multiple samples

The joint distribution form i.i.d. samplesx j is also an
exponential family distribution with the same conjugate.
One just applies the following changes to Equation (1):

τ(x)→ τ(x1, . . . , xm) =
∑

j

τ(x j),

a(x)→ a(x1, . . . , xm) =
∏

j

a(x j),

b→ mb

Additionally, one might have to multiplya by a factor
(such asm!) due to limited knowledge about the ordering
of the samples, but for simplicity’s sake, we disregard this
here.

The dimension of the sufficient statistic (i.e., a statistic
containing all the information in the sample that is rele-
vant for inference) remains the same, independent of the
number of samples. Exponential families of distributions
are the only families for which such finite sufficient statis-
tics exist [1].

The corresponding likelihood functionLx1,...,xm can then
also be used for updating and for calculating a predic-
tive distribution. After updatingCEf(· |n, y), we obtain
CEf(· |n + m,

ny+
∑

j τ(x j )
n+m ). The probability function of the

predictive distribution becomes

PEf(x1, . . . , xm |n, y) =
c(n, y)

∏

j a(x j)

c(n+m,
ny+

∑

j τ(x j )
n+m )

.

2.4.2 Reference table

The characteristics of exponential families as we describe
them here are not commonly found in the literature. The-
refore, we have included Table 1 for easy reference. For
some common sampling models that are described by an
exponential family, it contains information similar to that
derived for the centered normal in our example.

3 Imprecise probability models

Some ideas for using imprecise probability models invol-
ving exponential families for inference can be found in the
literature. One idea takes a prior conjugate distribution
with fixed ny and uses the neighborhood around this pri-
or created by varyingny [2] (robust Bayesian literature).
Another idea uses lower and upper density functions [4]
(imprecise probabilities literature).

The approach we present in this paper differs from the on-
es cited above, because it isn’t based on lower and up-
per density functions and because it doesn’t start from one
fixed prior distribution, but uses a convex set of distributi-
ons. Our approach is inspired by the approach to inference
from categorical data taken in the imprecise Dirichlet mo-
del or IDM [11] and the imprecise Dirichlet-Multinomial
model or IDMM [13].

We should also mention thebounded derivative model
[12]. This model is defined by the set of all strictly posi-
tive, continuous, smooth probability density functions that
have a bounded logarithmic derivative. It is of interest be-
cause it produces tractable inferences forP(τ |ψ) when the
sampling model is described by a one-parameter exponen-
tial family. This is also the case for our model, even out-
side of the one-parameter case. We will comment on this
further on in Section 3.2, where we introduce this result.

3Notation in Table 1:Rd×d
sy,pd are the symmetrical positive definite ma-

trices and
Γd(z) = π

d[d−1]
4

∏d
i=1 Γ(

2z+1−i
2 )

is the generalized gamma function.



Exponential family
probability function

(classical parameters used)
X ψ τ(x) Y

Normal
N(x | µ, σ), µ ∈ R, σ ∈ R+

(takeλ = 1
σ2 )

R

(

λµ

− 1
2λ

) (

x
x2

)

{

y ∈ R × R+ : y2 − y1
2 > 0

}

Centered normal
N(x |0, σ), σ ∈ R+

(takeλ = 1
σ2 )

R −1
2
λ x2

R
+

Scaled normal
N(x | µ,1), µ ∈ R R µ x R

Multivariate normal3

N(x | µ,Σ), µ ∈ Rd,Σ ∈ Rd×d
sy,pd

(takeΛ = Σ−2)

R
d

(

Λµ

− 1
2Λ

) (

x
xxT

)

{

y ∈ Rd × Rd×d
sy,pd : y2 − y1y1

T ∈ Rd×d
sy,pd

}

Bernoulli
Br(x | θ), θ ∈ (0,1)

{0,1} ln( θ
1−θ ) x (0,1)

Multivariate Bernoulli
Br(x | θ), θ ∈ (0,1)d : ‖θ‖ < 1

(takeθ0 = 1−∑

i θi)

{

x ∈ {0,1}d : ‖x‖ ≤ 1
} (

ln( θi

θ0
)
)d

i=1
x

{

y ∈ (0,1)d : ‖y‖ < 1
}

(take y0 = 1−∑

i yi)

Exponential
Ex(x | β), β ∈ R+ R

+

0 −β x R
+

Poisson
Pn(x | λ), λ ∈ R+ N0 ln(λ) x R

+

Exponential family
probability function

(classical parameters used)
a b c ∇b

Conjugate
probability density function

(classical parameters as argument)

Normal
N(x | µ, σ), µ ∈ R, σ ∈ R+
(takeλ = 1

σ2 , m2 = σ
2
+ µ2)

1√
2π

λµ2−ln(λ)
2

2
√

n√
2π

[

n[y2−y1
2]

2

]
n+3

2

Γ( n+3
2 )

(

µ

m2

) Normal-gamma

N(µ | y1,nλ)Ga(λ | n+3
2 ,

n[y2−y1
2]

2 )

Centered normal
N(x |0, σ), σ ∈ R+

(takeλ = 1
σ2 )

1√
2π

− ln(λ)
2

2
[

ny
2

]
n+2

2

Γ( n+2
2 )

σ2
Gamma

Ga(λ | n+2
2 ,

ny
2 )

Scaled normal
N(x | µ,1), µ ∈ R

e−
x2
2√

2π

µ2

2

√
ne

ny2

2√
2π

µ
Normal

N(µ | y,n)

Multivariate normal3

N(x | µ,Σ), µ ∈ Rd,Σ ∈ Rd×d
sy,pd

(takeΛ = Σ−2, M2 = Σ
2
+ µµT)

1√
2π

d
µT
Λµ−ln(|Λ|)

2
2
√

n
√

2π
d

[

n|y2−y1y1
T |

2

]

n+d+2
2

Γd( n+d+2
2 )

(

µ

M2

) Normal-Wishart

N(µ | y1,nΛ)Wi(Λ | n+d+2
2 ,

n[y2−y1y1
T]

2 )

Bernoulli
Br(x | θ), θ ∈ (0,1)

1 ln(1− θ) Γ(n)
Γ(n

[

1− y
]

)Γ(ny)
θ

Beta
Be(θ |ny,n

[

1− y
]

)

Multivariate Bernoulli
Br(x | θ), θ ∈ (0,1)d : ‖θ‖ < 1

(takeθ0 = 1−∑

i θi)
1 ln(θ0)

Γ(n)
Γ(ny0)

∏

i Γ(nyi)
θ

Dirichlet

Di(θ |ny,ny0)

Exponential
Ex(x | β), β ∈ R+ 1 − ln(β)

[

ny
]n+1

Γ(n+ 1)
1
β

Gamma
Ga(β |n+ 1,ny)

Poisson
Pn(x | λ), λ ∈ R+

1
x!

λ
nny

Γ(ny)
λ

Gamma
Ga(λ |ny,n)

Table 1: Characteristics of some commonly used exponentialfamilies



In this section, we define and investigate our imprecise
probability models from a theoretical perspective. To ma-
ke this discussion more tangible and clear, we again give
an example and make the link to the already established
IDM and IDMM models [11, 13].

3.1 Definitions

3.1.1 Notation

Up until now, we haven’t made any special distinction bet-
ween priors and posteriors. A prior could have been the
posterior of another prior. For what follows it is necessary
to introduce an initial prior, which is elicited on the basis
of assumptions about the sampling model under study, but
not on any observed samples.

We use an upper indexk ∈ N0 to indicate the number of
samplesx j that has been used to elicit the parameters of a
model. For example, a prior conjugate prevision will thus
be written asPC(· |n0, y0) and a predictive prevision based
onk samples will be denoted byPP(· |nk, yk).4

Remembering Section 2.4.1, it is easy to see that

nk
= n0

+ k, yk
=

n0y0
+ τk

n0 + k
, (4)

where we have usedτk to abbreviateτ(x1, . . . , xk).

To finish this notational digression, consider a subsetY0

of Y. We define

Yk
=

{

n0y+ τk

n0 + k
: y ∈ Y0

}

⊂ Y. (5)

3.1.2 Conjugate and predictive models

Both imprecise probability models we associate with an
exponential family are lower previsionsP that are defined
as lower envelopes of linear previsionsP. As such, these
lower previsions are coherent [10]. We also use the conju-
gate upper previsionP = −P(−·).5

Theconjugate modelis the lower envelope—taken over a
setYk—of a set of conjugate previsions:

PC(· |nk,Yk) = inf
y∈Yk

PC(· |nk, y).

This lower prevision is defined onL(Ψ). Although this
is possible, we will not look at the case where the lower
envelope is also taken over a set of counts.

4Comparing our notation with the one typically used for the IDM(M)
[11, 13, 14], we get the following correspondences:n0 ↔ s andy0 ↔ t.

5The word ‘conjugate’ used in this sentence expresses the given re-
lationship between a lower and an upper prevision. It has nothing to do
with the use of the word ‘conjugate’ in the rest of this paper,which refers
to a relationship between prior, likelihood, and posterior.

The predictive modelis the lower envelope—again taken
over a setYk—of a set of predictive previsions:

PP(· |nk,Yk) = inf
y∈Yk

PP(· |nk, y).

This lower prevision is defined onL(X). This model can
be seen as a restriction of the first using likelihood functi-
ons, i.e.,PP( f |nk,Yk) = PC(

∫

X f (x)Lxdx |nk,Yk), where
f ∈ L(X).

The credal setscorresponding to the models given above
consist of the closure of convex mixtures of the distribu-
tions corresponding to the respective probability functions
CEf(· |nk, y) andPEf(· |nk, y), wherey ∈ Yk.

3.1.3 The setYk

Now let us turn our attention to the setYk ⊂ Y. In Secti-
on 3.1.1,Yk is defined as a convex ‘mixture’ ofY0 ⊂ Y
andτk/k ∈ co(T ) with respective coefficientsn0/[n0

+ k]
andk/[n0

+ k]. This tells us thatYk is a translated (over
τk/[n0

+ k]) and scaled (factorn0/[n0
+ k]) version ofY0.

The imprecision of the inferences of a conjugate or predic-
tive model is (not necessary linearly) proportional to the
volume of the convex hull ofYk (relative to the volume of
Y). This indicates that the larger the number of pseudo-
countsn0 ∈ R+ is, the slower the scaling factor increases,
which results in a more conservative learning model. The
choice of the number of pseudocounts depends on the ap-
plication and is as such partly arbitrary.

The setY0 should be chosen such that it reflects the ini-
tial assumptions. It will often be required that inferences
from the initial prior are very conservative (expressing so-
me form of ‘near ignorance’ [10]) and choosingY0

= Y
would seem ideal. However, to make sure that the assess-
ments produced by the models do not remain vacuous as
more observations are made,Y0 should be bounded. A re-
sult of this is that the imprecision decreases as more obser-
vations are made, so no dilation (see, e.g., [8]) occurs with
these models. The choice of bound is again application-
dependent and as such partly arbitrary. Note that it should
not be hard to specify reasonable bounds, considering we
have already assumed it was possible to restrict the sam-
pling model to a specific exponential family.

As an example, let us look at the case of normal sampling.
From Table 1, we see that we can chooseY0 by taking a
boundα1

2 for y1
2 and a boundα2 + y1

2 for y2. The ratio-
nale for this choice will be made clear later. This example
is shown in Figure 1, where we also show what happens
when we update our model after observing a samplex.

Note that in the Bernoulli case (see Table 1) it isn’t neces-
sary to choose any bounds, asY is already bounded (i.e., it
is the so-calledd-dimensional unit-simplex). In this case,
the conjugate modelPC(· |nk,Yk) is an IDM [11] and the
predictive modelPP(· |nk,Yk) is an IDMM [13].



Y0

y1

y2

T

−α1 α1

α2

X = x

Y1

x
n0+1

x2

n0+1

y1

y2

b

τ(x) = (x, x2)

−n0α1+x
n0+1

n0α1+x
n0+1

n0[α2+α1
2]+x2

n0+1

Figure 1: Case of normal sampling: choosingY0 and updating toY1 (both sets are colored gray).

A convexY0 is used in the IDM(M), in contrast to our
example. For the conjugate and predictive models, the set
Y0 can be any continuous or discrete subset ofY. The
actual choice should be inspired by the assumptions war-
ranted by the application at hand.

3.2 Results

We showed in Section 2.2 that for any conjugate prevision
it holds thatPC(∇b |n, y) = y. This allows us to derive the
following result for the conjugate model:

PC(∇b |nk,Yk) = yk
=

n0y0
+ kyk

n0 + k
,

PC(∇b |nk,Yk) = yk
=

n0y0
+ kyk

n0 + k
.

(6)

Here,yk andyk are the pointwise infimum and supremum

values of the elements ofYk. Because∇b = P(τ |ψ) is
often—though not always—a quantity of interest (see Ta-
ble 1), this result shows that the calculation of inferences
for these quantities is very straightforward.

We’ve already mentioned that for the bounded derivati-
ve model [12], a similar result holds. This is due to the
fact that the credal set for the bounded derivative model
includes some conjugate distributions (but, in contrast to
our model, also many non-conjugate ones) and that two of
these determine the upper and lower prevision ofP(τ |ψ)
(except when almost no samples have been observed).

Returning to our example of normal sampling, we know
it holds that∇b = (µ,m2). So after one observation, the
lower and upper previsions for the meanµ and the non-

central second momentm2 become:

PC((µ,m2) |n1,Y1) = (
−n0α1 + x

n0 + 1
,

x2

n0 + 1
),

PC((µ,m2) |n1,Y1) = (
n0α1 + x
n0 + 1

,
n0[α2 + α1

2] + x2

n0 + 1
).

These values are also indicated on Figure 1.

The fact that the values on they1 axis can be interpreted
as means and the values on they2 as a noncentral second
moments is what led us to our choice of bounds. Choosing
α2 + y1

2 as a bound fory2 is a seemingly reasonable ad-
hoc way of bounding the variance, becausem2 = σ

2
+ µ2.

The need to take a boundedY0 is immediately clear: if
‖α‖ → +∞, up to three out of four of the above inferences
would remain unchanged, no matter how many samples
we observe. This is clearly unwanted behavior.

If we take the difference between upper and lower previ-
sion as a measure for the imprecision, we see that in this
example, afterm observations, we get

n0

n0 +m
(2α1, α2 + α1

2).

This illustrates the remark made earlier about the learning
conservatism increasing withn0. We see it takesm = n0

observations to decrease the imprecision to half its initial
value.

A similarly general result as in Equation (6) for the pre-
dictive model seems unlikely given the large variation in
functional form of the probability function (3) on which it
is based (see the functionsa andc in Table 1).

However, it is useful to cite a nice property for the predic-
tive model when the sampling distribution is a multivariate
Bernoulli (see Table 1), which is the single-sample versi-
on of the multinomial distribution. This predictive model



is an IDMM.6 For the linear previsions determining the
lower envelopePP(· |nk,Yk), it can be shown that

PP(I i |nk, y) = yi , ∀i ∈ {0, . . . ,d} , ∀y ∈ Yk, (7)

where I i is the indicator function for category numberi.
This property is the basis for the so-calledrepresentati-
on invariance principle[11], as it allows categories to be
pooled.

4 Credal classification

The naive credal classifieror NCC [14] was constructed
for classifying on the basis of one or more categorical at-
tributes. This means that for continuous attributes (such as
weight, length, etc.) a discretization must be performed.
We present an approach with which it is (at least theore-
tically) possible to classify using the continuous attributes
directly if they are distributed according to an exponential
family. Note that for the naive Bayes classifier—the analo-
gous classifier in a precise probability framework—there
already exist approaches using continuous attributes [6, 3].

We first reintroduce the concept of a credal classifier, but
in a different manner than in [14], in order to make our
contribution fit more naturally. Again, we give a small
example to illustrate the theory.

4.1 Classifying

Consider some attributes taking values in a setA, and a set
of classesC. A classifier is a function that maps attribute
valuesa ∈ A to one or more classesc ∈ C. For example, a
parent choosing a T-shirt size (the classes: small, medium,
large) for a child (with attributes: size, growth rate, etc.) is
a classifier.

A credal classifieruses a conditional imprecise probabili-
ty modelP(· | A) defined onL(C) to determine the expec-
ted utility of deciding between one class and another for
a given set of attribute values. The specific approach to
decision making we use here is calledmaximality[10, 9].
Consider the utility functionsfc′ , fc′′ ∈ L(C) associated
with the actions of choosingc′ or choosingc′′. Given at-
tribute valuesa, if the lower expected utility of choosing a
classc′ overc′′ is strictly positive, then classc′ is preferred
to c′′. Formally:

P( fc′ − fc′′ |a) > 0⇔ c′ ≻ c′′.

This criterion creates a strict partial order on the set of
classesC. The maximal, i.e., undominated, elements of
this partial order will be the output of the credal classifier.

To simplify matters, we use an indicator functionIc as the
utility function for choosing a classc. This corresponds

6To be exact, it differs slightly, but this difference is irrelevant.

to a choice of T-shirt size being either right or wrong. It
means we disregard, e.g., the fact that a T-shirt that is too
large, might one day fit the growing child, but that a T-shirt
that is too small, will never fit that child. Our criterion
becomes

P(Ic′ − Ic′′ |a) > 0⇔ c′ ≻ c′′. (8)

Of course, to use this criterion, we need the modelP(· | A).
The construction of models that allow us to apply the abo-
ve criterion is the subject of the next section.

4.2 Class and attribute models

4.2.1 The general approach

First consider aclass modelthat describes the knowled-
ge about the classes. This model could—in our T-shirt
example—contain the information that at least half of the
children need a size medium (this is what the parent belie-
ves). For this model we use a lower previsionP onL(C).

Next, consider anattribute modelthat describes the know-
ledge about the attribute values for a given class. A parent
could, e.g., believe that children that need size medium T-
shirts are mostly male pre-teens. For this model, we use a
conditional lower previsionP(· | C) onL(A).

Using marginal extension [10], we combine the class mo-
del P and attribute modelP(· | C) into a class-attribute
model E defined onL(C × A). Explicitly, for a gamble
f ∈ L(C ×A) we get

E( f ) = P(P( f | C)) = P(
∑

c∈C
IcP( f (c, ·) | c)).

This joint model could for instance tell us that size large
T-shirt-wearing toddlers make up less than one-tenth of all
the T-shirt-wearing children.

4.2.2 Specifying the models

To arrive at the probabilistic model we use in the NCC, we
now specify class and attribute models. Although we know
full well that other options are imaginable, we will restrict
ourselves to models of the type specified in Section 3.1.2,
because they form a natural generalization of the model
commonly used [14].

The sample spaceX for theclass modelconsists of the fi-
nite number of classes inC. Together with the fact that
we suppose our samples are i.i.d., it is evident that we use
a model for the multivariate Bernoulli case. As our class
model must be defined onL(C), we have to use a predicti-
ve modelPP(· |nC,YC). (Note: to alleviate the notation we
omit—wherever possible—the superscript for the number
of samples used to train our model. SonC andYC should
be read asnk

C andYk
C.) The initial prior we use is based

on the setY0
C = {y ∈ (0,1)d :

∑

c∈C yc < 1}. As mentioned



earlier, this model is an IDMM. Remember that the choice
of initial countsn0

C depends on the actual application.

Incorporating our choice of class model, we can rewrite
our class-attribute model for anyf ∈ L(C ×A),

E( f ) = PP(
∑

c∈C
IcP( f (c, ·) | c) |nC,YC)

= inf
y∈YC

PP(
∑

c∈C
IcP( f (c, ·) | c) |nC, y)

= inf
y∈YC

∑

c∈C
PP(Ic |nC, y)P( f (c, ·) | c)

= inf
y∈YC

∑

c∈C
ycP( f (c, ·) | c),

where we used Equation (7) in the last step.

The sample spaceX for the attribute modelis the set of
attribute valuesA. We assume from now on that the at-
tribute values are distributed according to an exponential
family. Given a classc, we can then use a type-1 product
[10] of predictive modelsPP(· |nA|c,YA|c)—one for every
attribute—as our attribute model. Such a type-1 product
can be used under the assumption that given the class, the
different attributes are independent, which is why the name
naivecredal classifier is used. To simplify the notation, we
will from now on suppose we only use one attribute. The
generalization to multiple attributes is straightforward, alt-
hough coping with the corresponding increase in computa-
tional complexity is much less so. Again, the initial para-
metersn0

A|c andY0
A|c are application-dependent and can as

such be chosen relatively freely.

When takingPP(· |nA|c,YA|c) to be an IDMM, the resul-
ting classifier corresponds to the classical definition of the
NCC [14].

Taking into account the restriction of our attribute models
to predictive models for exponential families, our class-
attribute model can be written as (f ∈ L(C ×A))

E( f ) = inf
y∈YC

∑

c∈C
ycPP( f (c, ·) |nA|c,YA|c).

It is useful to have a short look at how updating works
in our model. This updating corresponds to the so-called
training of our model with a set of pre-classified attribute
samples, or couples of the form (c,a). (Training would—
in our T-shirt example—correspond to the parent assimi-
lating the specifics of any child with nicely fitting T-shirt
that they see.) We suppose that we’ve already updated with
a number of samples and now observe (c′,a′). We upda-
te E by updating the parameters of the class and attribute

models that compose it (see Equation (4)):

nC → nC + 1,

YC →
{(

nCyc + δcc′

nC + 1

)

c∈C
: y ∈ YC

}

,

nA|c′ → nA|c′ + 1,

YA|c′ →
{

nA|c′yA|c′ + a′

nA|c′ + 1
: yA|c′ ∈ YA|c′

}

.

All the other parameters remain unchanged.

From the above it follows thatnCyc → nCyc + δcc′ .7 Gi-
ven we have some freedom in choosingnA|c, this property
allows us to setnA|c = nCyc for all c ∈ C. This is also do-
ne implicitly in the classical definition of the NCC [14].8

Although it is possible to use values fornA|c that do not
depend onyc (which even leads to easier calculations), the
above choice allows for a very nice interpretation. We can
now interpretn0

C as pseudocounts: a number of hypothe-
tical observations (c,a) we use in our model. These hy-
pothetical observations have an average sufficient statistic
that can take on any value inY0

C × Y0
A|c. They correspond

to y in Equation (5) and account for all the imprecision in
our inferences. As the number of real observations (c,a)
grows, the relative weight of the pseudocounts will dimi-
nish, and with it the imprecision.

So finally, the class-attribute model we are going to use
can be written as (f ∈ L(C ×A))

E( f |nC,YC,YA|C)
= inf

y∈YC

∑

c∈C
ycPP( f (c, ·) |nCyc,YA|c)

= inf
y∈YC

yA|C∈YA|C

∑

c∈C
ycPP( f (c, ·) |nCyc, yA|c)

= inf
y∈YC

yA|C∈YA|C

∑

c∈C
yc

∫

A
f (c, ·)PEf(· |nCyc, yA|c),

whereYA|C = (YA|c)c∈C.

4.3 Classifying (bis)

We now have a joint modelE(· |nC,YC,YA|C) defined on
L(C × A), while we need the corresponding conditional
model P(· | A) on L(C). Using Bayes’ rule for density
functions [10], we can write (g ∈ L(C))

P(g | A) = inf
y∈YC

yA|C∈YA|C

∑

c∈C g(c)ycPEf(a |nCyc, yA|c)
∑

c∈C ycPEf(a |nCyc, yA|c)
,

if
inf

y∈YC
yA|C∈YA|C

∑

c∈C
ycPEf(a |nCyc, yA|c) > 0. (9)

7Notation: δαβ is the Kronecker delta, which is 1 whenα = β and 0
otherwise.

8This is compatible with a sensitivity analysis interpretation [10].



Whenever Condition (9) holds, we can rewrite Criteri-
on (8) as follows:

inf
y∈YC

yA|C∈YA|C

[

yc′PEf(a |nCyc′ , yA|c′ )

−yc′′PEf(a |nCyc′′ , yA|c′′ )
]

> 0⇔ c′ ≻ c′′.

This criterion can be put into its final form by realizing
that the parametersyA|c, c ∈ C are independent. We find

inf
y∈YC

[

yc′ inf
yA|c′∈YA|c′

PEf(a |nCyc′ , yA|c′ )

−yc′′ sup
yA|c′′∈YA|c′′

PEf(a |nCyc′′ , yA|c′′ )















> 0⇔ c′ ≻ c′′.

(10)

This criterion can also be shown to be equivalent to Crite-
rion (8) if Condition (9) does not hold.

As an example, we will look at the case where the attri-
bute values are distributed according to a centered normal
distribution. Using previous results, we know that

PEf(a |nCyc, yA|c) ∝
Γ( nCyc+3

2 )

Γ( nCyc+2
2 )

[

nCycyA|c
]

nCyc+2
2

[

nCycyA|c + a2
]

nCyc+3
2

. (11)

To apply Criterion(10), we first have to calculate the in-
fimum and supremum of this expression overYA|c, an in-
terval inR+. This can be done analytically. Then a two-
dimensional (yc′ , yc′′ ) constrained (yc′ + yc′′ ≤ 1) optimiza-
tion problem needs to be solved. It can be shown that for
most attribute values it is possible to reduce this to a one-
dimensional problem (yc′ + yc′′ = 1). (Note: this is always
the case for discrete attributes) When the observed attri-
bute valuea is an outlier—i.e.,a2 is much larger than the
lower bound of the intervalsYA|c, c ∈ {c′, c′′}—it might
be necessary to solve the more complex two-dimensional
optimization problem.

From the above example, it is clear that by not discretizing,
but rather using sampling models with continuous sample
spaces, the optimization problems we need to solve beco-
me more of a challenge. In the example, we have used only
one attribute. In the case of multiple attributes, the Expres-
sion (11) has to be replaced by a product of possibly non-
similar factors. As long as the optimization overYA|c for
each of the attributes can be done analytically, the ensuing
optimization problem will be two-dimensional. The pos-
sibility that this can be reduced to one-dimensional pro-
blems always remains, but because the two terms in Cri-
terion (10) will be more complex expressions inyc, this
becomes less likely.

4.4 Remarks

We can make some finishing remarks about the conceptu-
al differences and similarities between using a model for

continuous variables or using a model for discrete (discre-
tized) variables, i.e., an IDM(M).

When discretizing, one can approximate any type of distri-
bution, while the models we present are currently limited
to exponential families.

What one loses during discretization however, is that the
different classes may correspond to neighboring or distant
parts of the sample space. (One could imagine ad-hoc
ways of alleviating this problem by spreading out samples
over different classes.)

The models for the attributes, given different classes,
might be very different. When discretizing, this poses no
problem. When using models for continuous variables,
this may be taken into account by using different sampling
models for different classes. One could for example take
a model for centered normal variables for classc′, but one
for scaled normal variables forc′′.

5 Conclusions

In this paper we have first looked at exponential families
and the corresponding conjugate and predictive families.
The manner in which these families are described allo-
wed us to introduce two imprecise probability models for
inference in exponential families. The first, the conjuga-
te model, leads to an easy way of generating inferences
about the classical parameters of the exponential family
under study. The second, the predictive model, does not
seem such a good candidate for obtaining general results.
However, it does seem a very natural model for applicati-
ons. One of these applications is the naive credal classifier,
which we introduced using an approach different from the
classical one, to allow for continuous attributes.

Throughout this paper, loose ends were inevitably left
dangling. Some of them are irritating, some of them are
promising. We take a brief look at both types in the next
two sections.

5.1 Problems

As has become clear in the example around Expressi-
on (11), solving optimization problems is an important
part of working with the models we propose. We have
not given a full account of the solution to the optimization
problem in that example. One reason is that the focus of
this paper is on the description of the conjugate and predic-
tive models. Another reason is that we judge the lengthy
description would be of little added value.

Devising approximation algorithms to solve the optimiza-
tion problem might be necessary. The problem with these
is that, because we want conservative inferences, an ou-
ter approximation has to be used. For example, if in Cri-
terion (10), we would be satisfied with a local minimum



instead of the global minimum overYC (an inner approxi-
mation), the resulting ‘≻’-relation would be too strong.
This means that a class could be preferred to another even
though it is not warranted by the model. This implies that
there could be maximal elements of the resulting partial
order that would not have been maximal if the global mi-
nimum had been used.

5.2 Prospects for further research

We too can include the standard disclaimer about ample
prospects for further research. For one thing, one could
investigate other exponential families, whose probability
functions have a more general form than the one given by
Equation (1).9

Closer to the focus of this paper, we could investigate if it
is possible to find lower and upper cumulative distributi-
on functions for (some) predictive models, as has already
been done for the IDMM [13].

In the paper introducing the naive credal classifier [14],
a section is devoted to the case of coping with missing
data. The approach taken there can theoretically also be
used when the attribute values are continuous. Letting a
missing attribute valuea correspond to a subset ofA, we
just add one more optimization problem over this subset.
How this works out in practice remains to be investigated.

The issue of missing data in the training set of a credal
classifier, or more generally, of noisy samples, will have
its effect on the updating process and thus on the form of
the setsYA|C, and is also interesting to look at.

A last issue, for all conjugate and predictive models, is
forgetting. In some applications it might be interesting to
not let the model become too precise. This can be achieved
in anad-hocway by manipulating the number of countsn
outside of the updating process. It would be interesting to
look for approaches that are better justified.
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