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The underlying ideas of the development in these two sec-

Abstract
When considering sampling models described by a distri-tlons are the following:

bution from an exponential family, it is possible to create ] ] . ]
two types of imprecise probability models. One is based ® We restrict ourselves to nicely behaving sampling
on the corresponding conjugate distribution and the other ~ Models, namely those described by exponential fa-
on the corresponding predictive distribution. In this pape milies of distributions. (Section 2.1)

we show how these types of models can be constructed for
any (regular, linear, canonical) exponential family, sash

the centered normal distribution.

e We wish to make assessments about the parameters
of such a sampling model and update these assess-
ments in the light of new information. For this, we
use conjugate distributions, so that the prior and pos-
terior (obtained after updating the prior) belong to the
same class. The general expression for the conjugate
can be given. (Section 2.2)

To illustrate the possible use of such models, we take a
look at credal classification. We show that they are very
natural and potentially promising candidates for descri-
bing the attributes of a credal classifier, also in the case
of continuous attributes.

e We also wish to make predictive statements about fu-
Keywords. Exponential family, Imprecise probability mo- ture samples. A predictive distribution can easily be

dels, Inference, Conjugate analysis, Naive credal classi- ~ 9iven using the expression of the exponential family
fier. and its conjugate. (Section 2.3)

e Lack of specific prior information leads to the use of
imprecise probability models.

1 Introduction e Both the conjugate and the predictive distribution are

parameterized by: (Section 3.1)
The imprecise Dirichlet model [11] and the imprecise

Dirichlet-Multinomial model [13] were introduced as im-
precise probability models for making inferences from ca-
tegorical data. These models have two features of interest.
They are elicited using i.i.d. samples and the parameters of
the distributions they are based upon, correspond to some
sort of average sample. This last feature allows for impre-
cision by making a particular use of pseudocounts.

(i) a parametey that can be made to vary in a set
Y (which initially, before updating, is chosen to
reflect the prior information), producing a cohe-
rent lower prevision by using the lower envelope
theorem;

(ii) a parameten acting like sample counts, whose
initially chosen value (pseudocounts) determi-
nes how fast the imprecision is reduced by up-
dating.

The basis for these features is not only present in the ca-
se of categorical data, but also in other common sampling
models, such as normal sampling. In fact, it is possible
to construct similar imprecise probability models for sam- The imprecise Dirichlet model can be used for con-
pling from a distribution that belongs to an exponential structing the naive credal classifier [14], which does a-clas
family. This is the main theme of this paper. So we startsification on the basis of categorical (discrete) attribute
by introducing the exponential families of distributioms i  Using the models we introduce in this paper, we show in
Section 2. In Section 3 we show how to construct the cor-Section 4 that the naive credal classifier can be extended
responding imprecise probability models. to allow for continuous attributes.



2 Exponential families where [, stands for integration or summation over the spa-

ceX, andf is an element of(X), the set of measurable
Let us give a summary of the relevant theory about ex-gambles (bounded functions) éh (Note: we use similar
ponential families. As this is only a partial overview, we terminology and notation further on.)

refer to the literature [7, 5, 1] for more detailed informati | - exampleP(X?|y) = Vb = —1/2y, which is (evi-

on. The theoretlcal_ exposition |s_|ntersp_ersed with a S!m'dently) equal to the varianae? of the centered normal
ple but representative example, illustrating the thecaéti distribution

concepts we introduce.

2.1 An exponential family 2.2 The conjugate distribution

We look at sampling models where i.i.d. samples of a\yhen reinterpreting the probability function in Equati-
random variable (or vectorX are taken from a sample 5, (1) as a likelihood function

spaceX that is distributed according to axponential fa-
mily.! Such a distribution can be defined by giving its pro- Ly: ¥ - Ry — Ef(X| ),
bability (density or mass) function
we can define theorresponding conjugate distributig,
Ef(x[y) = a(x) expy, 7(x)) — b(y)), xe X. (1) 1] by giving its probability density function

In this expressions : X — 7 is a so-callegyficient sta- CEf(y |n,y) = c(n,y) exph [, y) — b)), v € ¥. (2)
tistic of X (more about this in Section 2.4.1) apde ¥ is

a so-callectanonical parameterBoth7 and¥ are (sub-  There are two parametensandy. The first,n e R*, can
sets of) finite-dimensional real vector spaces andlisa  be interpreted as a number of counts (possibly including
scalar product between elements of these subsets. Part$ome so-callegpgseudocounjs The othery € Y, corres-
cular to each family are the functioms: X — R* and  ponds to an average ffigient statistic, so it is natural that
b:¥—>R2 Y is the convex hull cof) of 7~ without—for technical
reasons—the border. The functiomepresents a normali-

As an example, we look at the centered normal distributi-___.
zation factor.

on. This is a relatively simple case, but the calculatioes ar

still representative of what is necessary for other fargilie A prior distribution with densityCEf(-|n,y) can beup-
To obtain the form of Equatiofil) we rewrite its classical ~datedafter observing a sampbe This gives aposterior
probability density function: distribution with densityp(- | n,y, X) < CEf(-| n, y)Lx. This

) posterior’'s density is equal ©Ef(- |n+1, '“’:T’f‘)) and thus

1 X a member of the same class as the prior. This property is
N(x|0,0) = exp-=—— . '
(x10,0) N P 20—2) calledconjugacy
(withxe R =X, 0 €R") We now have enough information to find the conjugate dis-

1 1, tribution for our example. Froir = R} we derive that

= —— exp=—=x* —In(0)) . .0 .

21 202 Y = R*. To determine the normalization functicn we

1 1 transform¥ such thaty is mapped to the so-called preci-

= o expir(¥) + 5 In(=2)) siond = & = -2y:

1
i _ 2 + _ _ - _
witht(X) =x"eR{ =T, ¢ = ~252 eR™=Y) CEf(y | n,y)dy = c(n,y) expn [—%y+ % In(,l)]) ”%H da

We can see that for this example, the scalar product is an
algebraic product = 1/ V2r, andb(y) = — In(-2y)/2.

A nice property of these distributions is tHe{r | ) = Vb. o Ga(A| nLZ ny
Here, we introduced our notation for the linear prevision 2 2

(expectation) associated with the distribution considere Thijs allows us to use the normalization fagsdyT(a) of
Itis defined as follows: the probability density functio®a(-|«,8) of the gamma

distribution to find
P(f|w):fXEf(-|w)f,

= %c(n, y)/lg exp(—n—zy/l)d/l

)da.

n+2
nyl 2
ki
1To be more precise and to follow the nomenclature in the liteeat C(n’ y) = 21_ PN
[7, 1], we should sayregular, linear, canonical exponential family (T)
2Notation: R* is the set of strictly positive reals. Further on, we use

R$, the set of nonnegative reals, aig, the set of nonnegative integers. wherel is the gamma function.




Also illustrated in the above example is the following ge-

The dimension of the glicient statistic (i.e., a statistic

neral idea. By applying a transformation to the parametercontaining all the information in the sample that is rele-

space? that mapg to an element of the classical parame-

vant for inference) remains the same, independent of the

ter space of the exponential family considered, the conjunumber of samples. Exponential families of distributions

gate can usually be written in terms of well-known density
functions. Besides helping interpretation, this also $stad
an easy way of determining the normalization function

A nice property of the conjugate previsi®®(-|n,y) on
L(¥) associated with a conjugate distribution, is that
Pc(Vb|n,y) = y. This implies thatPc(P(r|P)|n,y) =
y—whereP(- | W) is the function that mapg to P(- | ¢)—
allowing us to give an interpretation o

For our example, the prevision of the variance—which is

clearly of interest for inference problems—can now be ea-

sily determined: Pc(P(r|¥)|n,y) = Pc(c?|ny) = V.
This tells us thay can be interpreted as a variance.

2.3 The predictive distribution

Using the conjugate distribution, we can also derive the
corresponding predictive distributiofi]. Its probability
function is given by

c(n, y)a(x)
c(n + 1, Ty’

n+1

e X.
)

The predictive prevision associated with the predictige di
tribution isPp(- | n,y) on £(X).

PEf(xIn,y) = f CEf(-|n,y)Ly =
b4

Combining the results of the previous fragments of our
example, we can write down the probability density func-
tion of the predictive distribution,

n+2
L) [y

PEf(x|n,y) = — .
VET(") [ny + x2] %

2.4 Remarks
2.4.1 Multiple samples

The joint distribution form i.i.d. samplesx; is also an
exponential family distribution with the same conjugate.
One just applies the following changes to Equation (1):

(9 = 704, Xm) = > 7(X;),

J

a(x) = a(xg,...,Xm) = 1_[ a(x;),

j
b - mb

Additionally, one might have to multipla by a factor
(such agm!) due to limited knowledge about the ordering
of the samples, but for simplicity’s sake, we disregard this
here.

are the only families for which such finite ficient statis-
tics exist [1].

,,,,,

also be used for updating and for calculating a predic-
tive distribution. After updatingCEf(-|n,y), we obtain

7(Xj

CEf(:In+m %jm)). The probability function of the

predictive distribution becomes

c(n.y) IT; a(x;)

C(n +m ny"'%‘:r;(xj)

PEf(Xq, . .

S Xmlny) =

)

2.4.2 Reference table

The characteristics of exponential families as we describe
them here are not commonly found in the literature. The-
refore, we have included Table 1 for easy reference. For
some common sampling models that are described by an
exponential family, it contains information similar to tha
derived for the centered normal in our example.

3 Imprecise probability models

Some ideas for using imprecise probability models invol-
ving exponential families for inference can be found in the
literature. One idea takes a prior conjugate distribution
with fixed ny and uses the neighborhood around this pri-
or created by varyingy [2] (robust Bayesian literature).

Another idea uses lower and upper density functions [4]
(imprecise probabilities literature).

The approach we present in this papefals from the on-

es cited above, because it isn't based on lower and up-
per density functions and because it doesn’t start from one
fixed prior distribution, but uses a convex set of distributi
ons. Our approach is inspired by the approach to inference
from categorical data taken in the imprecise Dirichlet mo-
del or IDM [11] and the imprecise Dirichlet-Multinomial
model or IDMM [13].

We should also mention thbounded derivative model
[12]. This model is defined by the set of all strictly posi-
tive, continuous, smooth probability density functionatth
have a bounded logarithmic derivative. It is of interest be-
cause it produces tractable inferencesHr| ) when the
sampling model is described by a one-parameter exponen-
tial family. This is also the case for our model, even out-
side of the one-parameter case. We will comment on this
further on in Section 3.2, where we introduce this result.

3Notation in Table 1Rg;gd are the symmetrical positive definite ma-
trices and Al )
rd(Z) —n 7 n?j:]_ l—( 22+21—I )

is the generalized gamma function.

1]




Exponential family

probability function X 4 7(X) Yy
(classical parameters used)
Normal 1 «
N(x|y,o-),ueRl,o-eR+ R (_iu/l) (xz) {yeRxR+:y2—y12>0}
(taked = =) 2
Centered normal 1
N(x|0,0),0 € R* R —_— X2 R*
(taked = %) 2
Scaled normal
N(XIj 1) € R & . x ¥
Multivariate normat Au «
NG| ). B, € R R (_ / A) (XXT [y e RIXREG yp —yry,T e REA
(takeA =X79)
Bernoulli 0.1} In(l%g X ©.1)

Br(x|8),0 € (0,1)

Multivariate Bernoulli
Br(x|6),0 € (0,1)%: 0] <1
(takeo =1- 3 6)

{x {0, 19 : |Ix| < 1}

fye©1y:Imi<1]
(take = 1- ¥;y)

Exponential . .
Ex(x|f).B € R* o ki X B
Poisson +
Pn(x| ), 1 € R* No In(2) X R
Exponential family Conjugate
probability function a b c Vb probability density function
(classical parameters used) (classical parameters as argument)
n+3
(x| l;lorm?RJ R T S e K Normal-gamma
N(X|u,o0),neR, 0 € — B e T T e ( ) _y;2
Gaked= b m=o?e) | | 7 T my) | Ny n)Ga o2, ey
ni2
Centered normfl . " 2[n_2y] 2 Gamma
N(x|0,0),0 € R = — = o2 Ga(| "2, )
(taked = %) I'(%9)
Scaled normal % s Ve Normal
N(X|u,1),u €R Vor 2 Var K N(uly,n)
n+d+2
( ITAUIg;/arIatIEdn%rmgdxd 1| glAuin@A) | 24m [n|y2 2 ]T K Normal-Wishart
N(X M, iy € € sy,pd 2 —=—d T n+d+2 ( . n|yz— T
(d:2) M n+d+2 |yz YY1 |
(takeA = 272, Mp = 22 + ") o VT 2) IN(ulys, NA)WI(A | 5=, ==5=)
Bernoulli r'(n) Beta
1 In(1-0 0
Br(x|6),6 € (0,1) (1-9) I(n[1 - y])I(ny) Be(0|ny,n[1-y])
Multivariate Bernoulli .
r(n Dirichlet
Br(x|6),0 € (0,1)%: 0] <1 1 In(Ao) Iy 0 .
(takeeo =1- Zi 9i) F(nyo) Hi Iﬂ(nyl) D|(0 | ny, nyO)
Exponential 1 In@) [ny]™** 1 Gamma
Ex(x]B).8 € R* r(n+1) B Ga(@B|n+ 1,ny)
Poisson 1 1 n"y 1 Gamma
Pn(x|1),1 € RY X! r(ny) Ga(a|ny,n)

Table 1: Characteristics of some commonly used expondatizlies



In this section, we define and investigate our impreciseThe predictive models the lower envelope—again taken
probability models from a theoretical perspective. To ma-over a sety*—of a set of predictive previsions:

ke this discussion more tangible and clear, we again give Kk K

an example and make the link to the already established Pp( N YY) = ylergk Pe(-I1". ).

IDM and IDMM models [11, 13].
[ ] This lower prevision is defined afi(X). This model can

I be seen as a restriction of the first using likelihood functi-
3.1 Definitions ons, i.e.Po(f 1N, Y% = Po([; F(x)Lidx|nk, Y¥), where

3.1.1 Notation f e L(X).
; o The credal setcorresponding to the models given above
Up until now, we haven't made any special distinction bet- ¢onsist of the closure of convex mixtures of the distribu-

ween priors and posteriors. A prior could have been thetions corresponding to the respective probability funio
posterior of another prior. For what follows it is necessary cgf(. | nk y) andPE(- | ik, y), wherey € Y.

to introduce an initial prior, which is elicited on the basis
of assumptions about the sampling model under study, bug 1 3 The sety*
not on any observed samples.

We Use an ubper inddk € No to indicate the number of Now let us turn our attention to the s&#* c V. In Secti-
PP 0 on 3.1.1,Y¥ is defined as a convex ‘mixture’ gf° c Y

samplesk; that has been L_Jsed to_eI|C|t the pz_ir_amet_ers of aandrk/k € co(T) with respective coicientsn?/[n° + K]
model. For example, a prior conjugate prevision will thus

) o " o andk/[n° + K]. This tells us thaty is a translated (over
2?} ﬂg:qgéf\‘;v(i”' Qe Qn%rt‘g dab%:je(fj;ﬁgvfk)?:ews'on based 7¢/[n° + K]) and scaled (facton®/[n° + K]) version ofY°.

Remembering Section 2.4.1, it is easy to see that The imprecision of the inferences of a conjugate or predic-

tive model is (not necessary linearly) proportional to the
MOy0 4 7k volume of the convex hull a¥* (relative to the volume of

n“=n’+k yE = : (4)  Y). This indicates that the larger the number of pseudo-
countsn® € R* is, the slower the scaling factor increases,
which results in a more conservative learning model. The

choice of the number of pseudocounts depends on the ap-
To finish this notational digression, consider a sulg&t plication and is as such partly arbitrary.

of Y. We define

n% + k

where we have used to abbreviater(xy, . . ., ).

The setY? should be chosen such that it reflects the ini-

. nly + 7% 0 tial assumptions. It will often be required that inferences
= { ryeld } cy. () from the initial prior are very conservative (expressing so

me form of ‘near ignorance’ [10]) and choosidff = YV
would seem ideal. However, to make sure that the assess-
ments produced by the models do not remain vacuous as
more observations are madg’ should be bounded. A re-
sult of this is that the imprecision decreases as more obser-
vations are made, so no dilation (see, e.g., [8]) occurs with
these models. The choice of bound is again application-
dependent and as such partly arbitrary. Note that it should
not be hard to specify reasonable bounds, considering we
The conjugate modeb the lower envelope—taken over a have already assumed it was possible to restrict the sam-

n® + k

3.1.2 Conjugate and predictive models

Both imprecise probability models we associate with an
exponential family are lower previsiofsthat are defined
as lower envelopes of linear previsioRs As such, these
lower previsions are coherent [10]. We also use the conju
gate upper previsioR = —P(-).%

sety*—of a set of conjugate previsions: pling model to a specific exponential family.
P_(-|n%, %) = inf Pe(-|nk,y). As an example, let us look at the case of normal sampling.
- ’ yeyk ’ From Table 1, we see that we can chod&eby taking a

_ S _ _ bounday? for y,? and a boundk, + y;? fory,. The ratio-
This lower prevision is defined of(‘¥). Although this  paje for this choice will be made clear later. This example
envelope is also taken over a set of counts. when we update our model after observing a sample

4Comparing our notation with the one typically used for the I(M Note that in the Bernoulli case (see Table 1) it isn’t neces-
[11, 13, 14], we get the following correspondencgs sandy® o t. sary to choose any bounds,¥ss already bounded (i.e., it

_The word ‘conjugate’ used in this sentence expresses tengd- s e so-called-dimensional unit-simplex). In this case,
lationship between a lower and an upper prevision. It hakingtto do

. k k .
with the use of the word ‘conjugate’ in the rest of this papeftich refers  the C'O’?]UQate modé?.(-| n%, y ) is an IDM [11] and the
to a relationship between prior, likelihood, and posterior predictive modeP,(- | n, Y¥) is an IDMM [13].
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Figure 1: Case of normal sampling: choosMgand updating t@/; (both sets are colored gray).

A convex Y0 is used in the IDM(M), in contrast to our central second moment, become:
example. For the conjugate and predictive models, the set
Y° can be any continuous or discrete subsed/of The Po((u, my) | nt, 1 = (
actual choice should be inspired by the assumptions war-
ranted by the application at hand. Pe((u, mp) | nt, Y1) = (

Mo +x X2
nP+1 "no+ 1)’
oy + x Nas + a1?] + X2
n+1°~° no+1
These values are also indicated on Figure 1.

~—

32 Results The fact that the values on tlye axis can be interpreted

as means and the values on theas a noncentral second
moments is what led us to our choice of bounds. Choosing
a» + Y12 as a bound foy, is a seemingly reasonable ad-
hoc way of bounding the variance, becamse= o + ui°.

The need to take a boundéf} is immediately clear: if

We showed in Section 2.2 that for any conjugate prevision
it holds thatPc(Vb|n,y) = y. This allows us to derive the
following result for the conjugate model:

- n%y0 + kyk ||| = +o0, Up to three out of four of the above inferences
P.(Vb|n®, Y¥) = )_/k =TTk would remain unchanged, no matter how many samples
05 + kyk (6) we observe. This is clearly unwanted behavior.
5 K oyky ok _
Pe(Vb|n . ") =¥ = M+Kk If we take the diference between upper and lower previ-

sion as a measure for the imprecision, we see that in this

L example, aftem observations, we get
Here,y* andy* are the pointwise infimum and supremum P g

L . 0
values of the elements @f¥. Becausevb = P(r|y) is n
often—though not always—a quantity of interest (see Ta- n% +m
ble 1), this result shows that the calculation of inferencesThis illustrates the remark made earlier about the learning
for these quantities is very straightforward. conservatism increasing witlf. We see it takem = n°
We've already mentioned that for the bounded derivati- observations to decrease the imprecision to half its initia

ve model [12], a similar result holds. This is due to the value

fact that the credal set for the bounded derivative modelA similarly general result as in Equation (6) for the pre-
includes some conjugate distributions (but, in contrast todictive model seems unlikely given the large variation in
our model, also many non-conjugate ones) and that two ofunctional form of the probability function (3) on which it
these determine the upper and lower previsiofP@f| ) is based (see the functioasandc in Table 1).

(except when almost no samples have been observed).

(2&’1, s + (112).

However, it is useful to cite a nice property for the predic-
Returning to our example of normal sampling, we know tive model when the sampling distribution is a multivariate
it holds thatVb = (u,mp). So after one observation, the Bernoulli (see Table 1), which is the single-sample versi-
lower and upper previsions for the mearand the non-  on of the multinomial distribution. This predictive model



is an IDMM.® For the linear previsions determining the to a choice of T-shirt size being either right or wrong. It
lower envelopeP, (- | nk, Y¥), it can be shown that means we disregard, e.g., the fact that a T-shirt that is too
large, might one day fit the growing child, but that a T-shirt
Pe(liInk,y) =y, Vi€ {0,...,d}, Vye Y%,  (7)  thatis too small, will never fit that child. Our criterion

. o ) ) becomes
wherel; is the indicator function for category numbier Plle - le]@) >0 ¢ > . @)

This property is the basis for the so-callexpresentati-

on invariance principlg11], as it allows categories to be Of course, to use this criterion, we need the mdrielA).

pooled. The construction of models that allow us to apply the abo-
ve criterion is the subject of the next section.

4 Credal classification

4.2 Class and attribute models
The naive credal classifieor NCC [14] was constructed
for classifying on the basis of one or more categorical at-4-2.1  The general approach
tributes. This means that for continuous attributes (ssch a . . .
weight, length, etc.) a discretization must be performed.F'rSt consider alass mode_that describes th_e knowled-_
We present an approach with which it is (at least theore-9¢ about the cle_tsses._ This m.odel could—in our T-shirt
tically) possible to classify using the continuous atttésu eﬁ{;l\(rjnple—c%ntam the w:jfp rmattéqn.thathai iEaSt half tog trll.e
directly if they are distributed according to an expondntia \(;els) rle:r;rng]?s ;j&zj vrcee u|:ema(I0\|/3elf V\;esislazﬁig?g) ele-
family. Note that for the naive Bayes classifier—the analo- ' P = '
gous classifier in a precise probability framework—there Next, consider aattribute modethat describes the know-
already exist approaches using continuous attributeg.[6, 3 ledge about the attribute values for a given class. A parent

, . e could, e.g., believe that children that need size medium T-
We first reintroduce the concept of a credal classifier, but_, . ;
. ) . . shirts are mostly male pre-teens. For this model, we use a
in a different manner than in [14], in order to make our

contribution fit more naturally. Again, we give a small conditional lower previsiof(- | C) on L(A).

example to illustrate the theory. Using marginal extension [10], we combine the class mo-
del P and attribute modeP(-|C) into a class-attribute
4.1 Classifying model E defined onL(C x A). Explicitly, for a gamble

f € £(C x A) we get
Consider some attributes taking values in ageand a set
of classe<. A classifier is a function that maps attribute E(f) = P(P(f |C)) = E(Z IP(f(c,-)|C)).
valuesa € A to one or more classes= C. For example, a ceC
parent choosing a T-shirt size (the classes: small, medium,

large) for a child (with attributes: size, growth rate, pts. 1 his joint model could for instance tell us that size large
a classifier. T-shirt-wearing toddlers make up less than one-tenth of all

» N ) ] _ the T-shirt-wearing children.
A credal classifieluses a conditional imprecise probabili-

ty modelP(- | A) defined onL(C) to determine the expec-
ted utility of deciding between one class and another for
a given set of attribute values. The specific approach torg arrive at the probabilistic model we use in the NCC, we
decision making we use here is calledximality[10, 9].  now specify class and attribute models. Although we know
Consider the utility functiondc, fo: € L(C) associated  full well that other options are imaginable, we will restric
with the actions of choosing or choosinge”. Given at-  ourselves to models of the type specified in Section 3.1.2,

tribute values, if the lower expected utility of choosing a pecause they form a natural generalization of the model
classc’ overc” is strictly positive, then class is preferred  commonly used [14].

toc¢”. Formally:

4.2.2 Specifying the models

The sample spac¥ for the class modetonsists of the fi-
P(fy - forl@) >0 ¢ > . nite number of classes i@@. Together with the fact that

we suppose our samples are i.i.d., it is evident that we use
This criterion creates a strict partial order on the set ofa model for the multivariate Bernoulli case. As our class
classeC. The maximal, i.e., undominated, elements of model must be defined af(C), we have to use a predicti-
this partial order will be the output of the credal classifier ve modelP.(-|n¢, Y¢). (Note: to alleviate the notation we
omit—wherever possible—the superscript for the number
of samples used to train our model. &opandY should
be read asl, andYX.) The initial prior we use is based
5To be exact, it dfers slightly, but this dference is irrelevant. onthe sety; = {y € (0, 1) : Yoo Ve < 1). As mentioned

To simplify matters, we use an indicator functiras the
utility function for choosing a class. This corresponds




earlier, this model is an IDMM. Remember that the choice models that compose it (see Equation (4)):
of initial countsng depends on the actual application.

Ng — N¢ + 1,
Incorporating our choice of class model, we can rewrite
. NcYe + dce .
our class-attribute model for arfye £(C x A), Y, a1l yeVey,
C ceC

Nae — Nae + 1,

E(f) =Ps()  IcP(f(c,)[0)Inc, Yc) NacYyae +@
P ; C. C C y?ﬂc' — Ti—l . yﬂ|c’ (S yﬂlcr .
= ngfc PP(Z [cP(f(c,-)Ic)Inc,y) All the other parameters remain unchanged.
ceC
. From the above it follows thatcy. — ngye + dce.” Gi-
= inf Pp(l P(f(c,- c
ngc ;C plcIne. YR(T(C)10) ven we have some freedom in choosimg, this property

. allows us to sehge = gy for all c € C. This is also do-
= ylgnyZch(f(c, )1c), ne implicitly in the classical definition of the NCC [14].
o<C Although it is possible to use values fog that do not
depend ory. (which even leads to easier calculations), the
above choice allows for a very nice interpretation. We can
now interpremg as pseudocounts: a number of hypothe-
The sample spac¥ for the attribute modelis the set of  tical observationso(a) we use in our model. These hy-
attribute valuesA. We assume from now on that the at- pothetical observations have an averag@iaeant statistic
tribute values are distributed according to an exponentiakhat can take on any value .Mg X yf;uc. They correspond
family. Given a clasg, we can then use a type-1 product toy in Equation (5) and account for all the imprecision in
[10] of predictive model®, (- | N, Yac)—one for every  our inferences. As the number of real observatians)(

attribute—as our attribute model. Such a type-1 productgrows, the relative weight of the pseudocounts will dimi-
can be used under the assumption that given the class, theish, and with it the imprecision.

different attributes are independent, which is why the nameS finallv. the cl i del .
naivecredal classifier is used. To simplify the notation, we °° 'k:‘a y, the ca;ss-attrl ute model we are going to use
will from now on suppose we only use one attribute. The @1 P€ written asf(e L(C x A))

generalization to multiple attributes is straightforwzati- E(fInc, Y, Yac)

hough coping with the corresponding increase in computa- )
jnf D YePe(F(C.) Incye. Vo)
¢ teC

where we used Equation (7) in the last step.

tional complexity is much less so. Again, the initial para-

metersng,(Ic andygh are application-dependent and can as _
such be chosen relatively freely. = ngf Z YePe(f(C, ") INcYe, Yaic)
(4
C
When takingP, (- | Nz, Y #c) to be an IDMM, the resul- YaceYnc
ting classifier corresponds to the classical definition ef th - inf f f(c, )PEf(- | ne
NGO LA o ;yc | F(CIPERCIncYe. Yg)
AlC Alc

Taking into account the restriction of our attribute models
to predictive models for exponential families, our class-
attribute model can be written aé € £(C x A))

Whereyyuc = (yﬂlc)cec-

4.3 Classifying (bis)

_ We now have a joint modé(- | n¢, Y¢, Y #c) defined on
E(h= ylergc Z YePo(f(C, ) INAe, Yoarc)- L(C x A), while we need the corresponding conditional
oeC model P(-| A) on £(C). Using Bayes’ rule for density
functions [10], we can writeg(e £L(C))

Ycec 9(Q)YPEf(al neye, Yaic)

It is useful to have a short look at how updating works P(g|A) = inf

in our model. This updating corresponds to the so-called yﬂfeyyc,mc Zocc YePEM(@| MeYe, Yone)
training of our model with a set of pre-classified attribute

samples, or couples of the form ). (Training would— if ]

in our T-shirt example—correspond to the parent assimi- y'gc ZyCPEf(al ncYe, Yaic) > 0. ©)
lating the specifics of any child with nicely fitting T-shirt yaceY me €

that they See') We Suppose thatwe've already uDdatEd with "Notation: dqp IS the Kronecker delta, which is 1 when= g and 0
a number of samples and now obserged’). We upda-  gherwise.
te E by updating the parameters of the class and attribute &This is compatible with a sensitivity analysis interpregat[10].



Whenever Condition (9) holds, we can rewrite Criteri- continuous variables or using a model for discrete (discre-
on (8) as follows: tized) variables, i.e., an IDM(M).

inf  [yoPEf(@l neYe Ve When discretizing, one can approximate any type of distri-
yeYc ’ bution, while the models we present are currently limited

Yac<Yac to exponential families.
-y PEf(@| NcYer, Yaer)] > 0 ¢ > c”. ) ) o )
¢ © 'd What one loses during discretization however, is that the

This criterion can be put into its final form by realizing different classes may correspond to neighboring or distant
that the parametessyc, ¢ € C are independent. We find  parts of the sample space. (One could imagine ad-hoc
ways of alleviating this problem by spreading out samples

iry‘ Vo inL PEf(al neye, Yae) over diferent classes.)
ye Yac €Y ae ) ) )
’ A The models for the attributes, givenfigirent classes,
—yer  Sup PEf(alngye.Yae)|>0e ¢ >’ might be very diferent. When discretizing, this poses no
Yo €Y e problem. When using models for continuous variables,

(20) this may be taken into account by usingfdient sampling
models for diferent classes. One could for example take
a model for centered normal variables for cle’s$ut one

for scaled normal variables faf’.

This criterion can also be shown to be equivalent to Crite-
rion (8) if Condition (9) does not hold.

As an example, we will look at the case where the attri-
bute values are distributed according to a centered normat  Conclusions
distribution. Using previous results, we know that

I—(ncyc+3) n ]"cvzc+2 In this paper we have first looked at exponential families
PEf(alncYe, Yac) « nC2+2 cYcYe e (11 and the corresponding conjugate and predictive families.
T(*%5™) [neyeyse + 822 The manner in which these families are described allo-

wed us to introduce two imprecise probability models for
inference in exponential families. The first, the conjuga-

terval inR*. This can be done analytically. Then a two- te model, Ieads. to an easy way of generating |nferenges
about the classical parameters of the exponential family

c{rmens:onalyc,yc/) constrainedy: +Ye: < 1) optimiza- under study. The second, the predictive model, does not
tion problem needs to be solved. It can be shown that for h d didate for obtaini | |
most attribute values it is possible to reduce this to a onesSeM Such a good candi ate for obtaining general results.

. ; R However, it does seem a very natural model for applicati-
dimensional problemy( + Yy = 1). (Note: this is always o . . .

. ; .ons. One of these applications is the naive credal classifier
the case for discrete attributes) When the observed attri- |, - : ; ,
. . e which we introduced using an approacifeiient from the
bute valuea is an outlier—i.e.a* is much larger than the . : ;
. RS classical one, to allow for continuous attributes.

lower bound of the interval® 4, c € {c,c”’}—it might
be necessary to solve the more complex two-dimensional hroughout this paper, loose ends were inevitably left
optimization problem. dangling. Some of them are irritating, some of them are

From the above example, itis clear that by not discretizing,&zn;i?ig'n:ve take a brief look at both types in the next

but rather using sampling models with continuous sample
spaces, the optimization problems we need to solve beco- bl
me more of a challenge. In the example, we have used only?'l Problems

one attribute. In the case of multiple attributes, the Egpre As has become clear in the example around Expressi-

sion (11) has to be replaced by a prqdugt of possibly noN (11), solving optimization problems is an important
similar factors. As long as the optimization o\# for

h of the attribut be d wtically. th . &art of working with the models we propose. We have
c€ach ot the atributes can be done analytically, tn€ ensuing, given a full account of the solution to the optimization
optimization problem will be two-dimensional. The pos-

. . ; . problem in that example. One reason is that the focus of
sibility that this can be reduced to one-dlmen5|ona_l PO this paper is on the description of the conjugate and predic-
ble_ms always_ remains, but because the two terms in Crl'tive models. Another reason is that we judge the lengthy
terion (10) W|Il_be more complex expressionsyi) this description would be of little added value.
becomes less likely.

To apply Criterion(10), we first have to calculate the in-
fimum and supremum of this expression o¥gic, an in-

Devising approximation algorithms to solve the optimiza-
4.4 Remarks tion problem might be necessary. The problem with these

is that, because we want conservative inferences, an ou-
We can make some finishing remarks about the conceptuter approximation has to be used. For example, if in Cri-
al differences and similarities between using a model forterion (10), we would be satisfied with a local minimum
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