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Abstract

In the 1980s, a version of a marginal problem consid-
ered in this paper was connected, with the necessity
to cope with a task of knowledge integration in prob-
abilistic expert systems. In practical situations, mar-
ginal distributions representing pieces of local knowl-
edge are often inconsistent. The present paper intro-
duces an interval-valued solution, which always exists,
of a marginal problem even in cases when, because of
inconsistencies one cannot get a solution in a classical
sense.

This paper shows how the famous Iterative Propor-
tional Fitting Procedure, which is often used to get
a classical solution of a consistent problem, can also
be exploited when constructing an interval-valued so-
lution, and how any solution can be improved (tight-
ened).

Keywords. Multidimensional distributions,
marginal problem, consistency, IPFP, imprecise
probabilities, coherence.

1 Introduction

This contribution goes back to the 1980s, when several
papers promoting probabilistic methods for knowl-
edge representation in expert systems were published
[11, 1, 13, 14]. These papers proposed to represent
pieces of local knowledge as low-dimensional (oligodi-
mensional) probability distributions, and the global
knowledge of the area of interest by a multidimen-
sional distribution [7] expressed in the form of a
Bayesian network [6], or other type of (usually graph-
ical) Markov model [10]. These problems, which have
never been satisfactorily solved, arise when a system
of local knowledge, i.e. a system of oligodimensional
distributions, appears to be inconsistent. This hap-
pens quite often when pieces of local knowledge are
received from different sources (it can even happen in
a situation where oligodimensional distributions are

estimated from one data file with missing values).
In such a case a distribution does not exist which
would have all the oligodimensional distributions for
its marginals, and therefore the process of knowledge
integration cannot be successfully accomplished. This
situation, in which the corresponding marginal prob-
lem does not have a solution, was thoroughly stud-
ied in the thesis of Jǐŕı Vomlel [15], where algorithms
reaching approximate solutions were designed.

Taking advantage of the results achieved in the cited
thesis [15], in the present paper we shall study a clas-
sical marginal problem with a solution in a class of
interval-valued probability distributions. This means
we shall study the possibility of representing a system
of (precise) oligodimensional distributions by a mul-
tidimensional distribution whose values are intervals
from [0, 1]. It should be stressed, however, that a so-
lution of an inconsistent marginal problem requires
quite a different approach than that employed for de-
scription of the set of all solutions of a consistent prob-
lem.

2 Notation

In this text, we will deal with a finite system of finite-
valued random variables. Let N be a finite index set,
N 6= ∅. Each variable from {Xi}i∈N is assumed to
have a finite (non-empty) set of values Xi. As said
above, we shall deal with both precise and interval-
valued probability distributions in this paper. All
these distributions will be denoted by Greek letters.
Nevertheless, to make the presentation unambiguous,
we will call the precise distributions densities and de-
note them with “normal” symbols π, κ, µ. Thus π(x)
will, for a specific x ∈ X, always be a number from
the interval [0, 1]. In what follows, the word distri-
bution will be reserved for an interval-valued distri-
bution, which will always be denoted by bold char-
acters ππππ, κκκκ, µµµµ. Therefore, a value of ππππ(x) will always
be an interval inside of [0, 1]. In this paper, we will



use a simplified analogy of the notation used by Peter
Walley [16]: ππππ(x) = [ππππ(x), ππππ(x)]. Further, we always
assume that 0 ≤ ππππ(x) ≤ ππππ(x) ≤ 1, and∑

x∈X

ππππ(x) ≤ 1 ≤
∑
x∈X

ππππ(x).

Most of the densities and distributions considered in
this paper will be defined only for a subset of the
whole set of variables {Xi}i∈N . For K ⊆ N , we can
consider both a density π({Xi}i∈K) and a distribu-
tion ππππ({Xi}i∈K). To make the formulae more lucid,
the following simplified notation will be used. Sym-
bol π(xK) (ππππ(xK)) will denote both a |K|-dimensional
density (distribution) and a value of a probability den-
sity π (distribution ππππ), which is defined for variables
(Xi)i∈K at a combination of values xK ; xK thus rep-
resents a |K|-dimensional vector of values of variables
{Xi}i∈K . Analogously, we shall also denote the set of
all these vectors XK :

XK =×i∈KXi.

Naturally, when several densities (distributions) are
considered, we shall distinguish between them by in-
dices.

Since a distribution ππππ(xK) determines a subset of
[0, 1]XK , we can introduce a natural partial ordering
of distributions defined for the same set of variables
{Xi}i∈K :

ππππ ⊆ κκκκ
def⇐⇒ ∀xK ∈ XK (ππππ(xK) ⊆ κκκκ(xK)).

For a distribution ππππ(xK), symbol1 M(ππππ) will denote
the set of all the densities complying with the limits
given by ππππ:

M(ππππ) = {π(xK) : ππππ(xK) ≤ π(xK) ≤ ππππ(xK)
for all xK ∈ XK}.

This allows us to define an equivalence relation on the
set of all distributions. We say that two distributions
ππππ and κκκκ defined for the same set of variables XK are
structure equivalent (in symbol ππππ ' κκκκ) if M(ππππ) =
M(κκκκ). Notice that it does not necessarily mean that
ππππ = κκκκ. For example, as the reader can immediately
see, all three 1-dimensional distributions in Table 1
are different, pairwise structure equivalent, and

ππππ1 ⊃ ππππ2 ⊂ ππππ3.

1M(ππππ) is called by Weichselberger [17] a structure of ππππ,
Cozman and Walley [2] call it a credal set .

ππππ1 ππππ2 ππππ3

x = 0 0.2− 0.7 0.4− 0.7 0.4− 1.0
x = 1 0.2− 0.6 0.3− 0.6 0.3− 1.0

Table 1: Structure equivalent probability distribu-
tions ππππ1, ππππ2, ππππ3

3 Coherent distributions

In analogy with Walley’s terminology [16], we will call
a distribution ππππ(xK) coherent2 if ππππ is a lower envelope
of M(ππππ) and ππππ is an upper envelope of M(ππππ), i.e.

∀xK ∈ XK ∃π, κ ∈M(ππππ)
(π(xK) = ππππ(xK) & κ(xK) = ππππ(xK)).

Such a distribution is “minimal” in the sense of the
following assertion.

Lemma 1 A distribution ππππ(xK) is coherent iff

κκκκ(xK) ' ππππ(xK) & κκκκ ⊆ ππππ =⇒ κκκκ = ππππ. (1)

Proof. Assume first that the expression (1) does not
hold for ππππ. It means that there exists a distribution
κκκκ(xK) such that, for some (at least one) xK ∈ XK ,
either

ππππ(xK) < κκκκ(xK) ≤ κκκκ(xK) ≤ ππππ(xK) (2)

or
ππππ(xK) ≤ κκκκ(xK) ≤ κκκκ(xK) < ππππ(xK) (3)

and κκκκ(xK) ' ππππ(xK). Without loss of generality as-
sume the system of inequalities (2) holds true. We
can immediately see that there cannot be a density
π(xK) ∈ M(ππππ), for which π(xK) = ππππ(xK). If such a
density existed then it could not be from M(κκκκ(xK)),
and therefore κκκκ(xK) 6' ππππ(xK). So, we have proven
that ππππ is not coherent.

Now, assume that ππππ is not coherent, i.e., there is
xK ∈ XK such that none of the densities from M(ππππ)
achieves for xK one of the limit values of ππππ; say
ππππ(xK). It means that for all π ∈M(ππππ)

π(xK) > ππππ(xK).

Based on this assumption, we shall show that even

inf
π∈M(ππππ)

(π(xK)) > ππππ(xK). (4)

If the equality in (4) held true, it would be pos-
sible to construct an infinite sequence of densities
π1, π2, π3, . . . from M(ππππ) such that

lim
j→+∞

πj(xK) = ππππ(xK).

2Let us note that one finds a different (but equivalent) def-
inition of coherence in Walley’s cited book.



Considering another vector yK ∈ XK (yK 6= xK)
one could always find an infinite subsequence of
π1, π2, π3, . . . such that this subsequence would con-
verge also for yK (it follows from the fact that all val-
ues πj(yK) lie in the interval [0, 1]). Since we assume
that XK is finite, one could repeat this selection of a
convergent subsequence for all vectors from XK , get-
ting a convergent infinite sequence of densities from
M(ππππ). Its limit would also be from M(ππππ) and its
value at xK would equal ππππ(xK), which contradicts
our assumption. So we can conclude that inequality
(4) holds true. Therefore, if defining a distribution κκκκ
such that it differs from ππππ only in one limit value:

κκκκ(xK) = inf
π∈M(ππππ)

π(xK)

we see that κκκκ 6= ππππ, κκκκ ⊂ ππππ and κκκκ ' ππππ, which is contra-
dictory to (1).

The reader most likely noticed that, when proving in-
equality (4) in the previous proof, we took advantage
of the fact that we consider a finite system of finite
valued variables. The same property is also the ba-
sis for the following trivial characterization lemma,
which is presented without a proof.

Lemma 2 A distribution ππππ(xK) is coherent iff there
exists a finite system of densities {πi}m

i=1 ⊂ M(ππππ),
such that

ππππ(xK) = min
i=1,...,m

(πi(xK)) ,

ππππ(xK) = max
i=1,...,m

(πi(xK)) ,
(5)

4 Marginalization of interval-valued
distributions

Consider a probability density π(xN ) ∈ M(ππππ(xN )).
From π(xN ), one can easily (at least theoretically - at
this moment we are not interested in computational
complexity of the respective procedures) compute all
its marginal densities. For K ⊂ N it is described by
the formula

π(xK) =
∑

xN\K∈XN\K

π(xN )

=
∑

xN\K∈XN\K

π(xN\K , xK), (6)

which must be computed for all xK ∈ XK . In this ex-
pression, we have introduced a notation used through-
out this section: a vector xN is composed of two sub-
vectors xN\K and xK , where xK is a projection of
xN into XK , and, analogously xN\K is a projection
of xN into XN\K . For computation of marginal den-
sities, we need not exclude situations when K = ∅.

In accordance with the above-introduced formula, we
get π(x∅) = 1.

In general, marginalization of (interval-valued) distri-
butions can be introduced in several different ways.
The one adopted in this paper is the simplest from
the computational point of view. It simply repeats
the formula (6) for both lower and upper limits of
intervals separately:

ππππ(xK) =
∑

xN\K∈XN\K

ππππ(xN\K , xK),

ππππ(xK) = min

1,
∑

xN\K∈XN\K

ππππ(xN\K , xK)

 .

Notice that we could not afford this simple type of
marginalization if we did not also admit incoher-
ent distributions. This is because for this type of
marginalization it easily happens that ππππ(xN ) is co-
herent and its marginal distribution ππππ(xK) is inco-
herent; for an example, see Table 2, where ππππ(x1, x2)
is coherent and ππππ(x1) ' κκκκ(x1) and therefore, due to
Lemma 1, ππππ(x1) cannot be coherent. (To show that
for a marginal coherent distribution ππππ(xK) all its ex-
tensions ππππ(xN ) must also be coherent is left to the
reader.)

ππππ(x1, x2) ππππ(x1) κκκκ(x1)
x2

0.3− 0.4 0.1− 0.2 0.4− 0.6 0.4− 0.6
x1

0.2− 0.3 0.1− 0.4 0.3− 0.7 0.4− 0.6

Table 2: Coherent distribution ππππ(x1, x2), whose
marginal ππππ(x1) is not coherent

With respect to the above-mentioned fact that coher-
ence of a distribution does not extend to its marginals,
the following assertion is of great importance.

Lemma 3 For any two distributions ππππ(xN ) and
κκκκ(xN )

ππππ(xN ) ' κκκκ(xN ) =⇒ ππππ(xK) ' κκκκ(xK)

holds true for any K ⊆ N .

Proof. Consider a density π(xK) ∈ M(ππππ(xK)),
and let ππππ(xK) be a marginal of ππππ(xN ). Then
one can always find a density κ(xN ) ∈ M(ππππ(xN ))
such that3 κ(xK) = π(xK). Since we assume

3Let us present a hint of the proof for the reader who does
not consider this to be obvious. Consider an arbitrary vector
xK ∈ XK . For this vector

ππππ(xK) =
∑

xN\K∈XN\K

ππππ(xN\K , xK) ≤ π(xK)



that ππππ(xN ) ' κκκκ(xN ), M(ππππ(xN )) = M(κκκκ(xN )) and
therefore κ(xN ) ∈ M(κκκκ(xN )). However, it is ob-
vious that when marginalizing both a distribution
κκκκ(xN ) and a density κ(xN ) ∈ M(κκκκ(xN )), we get
a density κ(xK) from M(κκκκ(xK)). Since κ(xK) =
π(xK), we got M(ππππ(xK)) ⊆ M(κκκκ(xK)). The proof
is finished by realizing that roles of ππππ and κκκκ are
interchangeable.

5 Marginal problem

Consider a cover K1,K2, . . . ,Km of N (i.e. K1∪ . . .∪
Km = N), and a finite system

Ξ = {π1(xK1), π2(xK2), . . . , πm(xKm)}

of probability densities πi. It is well known (see e.g.
Section 5.2 in [5]) that exactly one of the following
three possibilities occurs:

(i) system Ξ of densities π1, . . . , πm is inconsistent,
i.e., there does not exist a density κ(xN ) such
that all πi (i = 1, . . . ,m) are its marginals

πi(xKi
) = κ(xKi

);

(ii) there exists a unique solution of the marginal
problem, i.e., there exists one and only one den-
sity κ(xN ), for which πi(xKi

) = κ(xKi
) holds

true for all i = 1, . . . ,m;

(iii) there exist infinitely many densities which are
solutions of the given marginal problem and these
solutions form a convex set in the set of all den-
sities of variables XN .

Denoting the set of all extensions of πi by Π(πi):

Π(πi) = {κ(xN ) : κ(xKi
) = πi(xKi

)} ,

and analogously

Π(Ξ) = {κ(xN ) : κ(xKi
) = πi(xKi

) ∀i = 1, . . . ,m}

=
m⋂

i=1

Π(πi),

≤
∑

xN\K∈XN\K

ππππ(xN\K , xK) = ππππ(xK).

Therefore, taking, for example,

κ(xN\K , xK)

= ππππ(xN\K , xK) + s(xK) ·
(
ππππ(xN\K , xK)− ππππ(xN\K , xK)

)
,

where s(xK) = (π(xK)− ππππ(xK)) / (ππππ(xK)− ππππ(xK)), one gets∑
xN\K∈XN\K

κ(xN\K , xK) = π(xK)

and ππππ(xN\K , xK) ≤ κ(xN\K , xK) ≤ ππππ(xN\K , xK).

the above-presented situations (i), (ii) and (iii) mean
that Π(Ξ) = ∅, |Π(Ξ)| = 1 and Π(Ξ) is a convex set,
respectively.

6 Iterative proportional fitting
procedure

As in the previous paragraph, consider a system

Ξ = {π1(xK1), π2(xK2), . . . , πm(xKm)}

of probability densities and let us briefly introduce
a simple version of an iterative procedure, usu-
ally called Iterative Proportional Fitting Procedure
(IPFP), which is connected with the names of Deming
and Stephan [4]. Starting with a uniform probability
density κ0(xN ), this procedure computes an infinite
sequence of densities κ1(xN ), κ2(xN ), . . . according to
the following process

κ1(xN ) = π1(xK1)
κ0(xN )
κ0(xK1 ) ,

κ2(xN ) = π2(xK2)
κ1(xN )
κ1(xK2 ) ,

...
κm(xN ) = πm(xKm) κm−1(xN )

κm−1(xKm ) ,

κm+1(xN ) = π1(xK1)
κm(xN )
κm(xK1 ) ,

...
κj(xN ) = πi(xKi)

κj−1(xN )
κj−1(xKi

) ,

...

(7)

where i = ((j − 1) mod m) + 1 in the last equation.

From the point of view of this paper, the most impor-
tant properties of this process are the following ones,
proven by Csiszár in [3].

• If Π(Ξ) 6= ∅ then there exists

κ∗(xN ) = lim
j→+∞

κj(xN ),

κ∗(xN ) ∈ Π(Ξ), and

H(κ∗(xN )) = max
µ∈Π(Ξ)

(H(µ(xN ))),

where H(µ(xN )) denotes the Shannon entropy of
density µ:

H(µ(xN )) = −
∑

xN∈XN

µ(xN ) log(µ(xN )).

• If Π(Ξ) = ∅ then lim
j→+∞

κj(xN ) does not exist.



Despite the fact that, to our knowledge, it has not
yet been proven, based on the results presented in
[15] and all the experiments performed by Jǐŕı Vomlel
and the authors, we conjecture that even in a case
where Π(Ξ) = ∅, the subsequences

κi(xN ), κm+i(xN ), κ2m+i(xN ), κ3m+i(xN ), . . .

converge for all i = 1, 2, . . . ,m. Since all the densities
κi, κm+i, κ2m+i, . . . are from Π(πi), it is obvious that,
under the above-mentioned conjecture, the distribu-
tion

κ∗i (xN ) = lim
j→+∞

κjm+i(xN )

is from Π(πi), too.

7 Interval-valued solution of a
marginal problem

Considering a marginal problem given by a system of
densities

Ξ = {π1(xK1), π2(xK2), . . . , πm(xKm)} ,

it is natural to ask whether it is possible to find an (in
a sense optimal) interval-valued distribution κκκκ(xN ),
for which

Π(Ξ) ⊆M(κκκκ(xN )).

This is a classical formulation of a marginal problem,
which was studied by many authors and, in its general
form, has never been satisfactorily solved. A famous
solution of this problem, known as Fréchet bounds
(see e.g. [12]), can be used when all of the distribu-
tions πi are one-dimensional .

In this paper we are discussing the marginal prob-
lem without any restrictions; it may be consistent or
inconsistent, but primarily we have in mind an incon-
sistent situation, i.e. the situation when Π(Ξ) = ∅.
For this case, the above-mentioned problem makes no
sense. So, our goal will be to specify a (smallest)
possible area of densities such that all marginal con-
ditions are met by at least one of the densities from
the selected area. This idea can be formalized in the
following two ways.

Definition 1 A probability distribution ππππ(xN ) is a
solution of a marginal problem given by system Ξ if,
for each density πi(xKi) from Ξ, there exists a den-
sity κ(xN ) ∈M(ππππ(xN )) such that κ(xKi

) = πi(xKi
).

Such a solution ππππ is tight if it is minimal in the sense
of ordering ⊆; for any solution κκκκ of the same marginal
problem

κκκκ ⊆ ππππ =⇒ κκκκ = ππππ.

Definition 2 A probability distribution ππππ(xN ) is a
solution of a marginal problem given by system Ξ if

each density πi(xKi
) ∈ Ξ is from M(ππππ(xKi

)). Such
a solution ππππ is tight if it is minimal in the sense of
ordering ⊆; for any solution κκκκ of the same marginal
problem

κκκκ ⊆ ππππ =⇒ κκκκ = ππππ.

Theorem 1 Definitions 1 and 2 are equivalent.

Proof. First, let us show that Definition 1 =⇒ Def-
inition 2. Let ππππ(xN ) be a solution in the sense of
Definition 1 and consider πi ∈ Ξ. Therefore, there
exists κ(xN ) ∈ M(ππππ(xN )) whose marginal equals πi:
κ(xKi

) = πi(xKi
). However, since κ ∈M(ππππ) we know

that its arbitrary marginal density κ(xK) is from the
respective set M(ππππ(xK)) (see Section 4), and there-
fore

πi(xKi
) = κ(xKi

) ∈M(ππππ(xKi
))

for all i = 1, 2, . . . ,m.

Now, let us show the reverse implication: Defini-
tion 2 =⇒ Definition 1. Let now ππππ(xN ) be a solu-
tion in the sense of Definition 2. Thus we know that
πi(xKi

) ∈M(ππππ(xKi
)), and therefore, following a hint

in Footnote 3, we can construct κ(xN ) ∈ M(ππππ(xN ),
which is an extension of πi(xKi).

Let us now answer the question of how to find an
interval-valued solution of a marginal problem defined
by a system of densities

Ξ = {π1(xK1), π2(xK2), . . . , πm(xKm
)} .

If Ξ is consistent (i.e., if Π(Ξ) 6= ∅) then one can
immediately see that any density π ∈ Π(Ξ) can be
used to define a solution ππππ(xN ):

ππππ(xN ) = ππππ(xN ) = π(xN ) ∀xN ∈ XN . (8)

Moreover, this solution is tight.

In an inconsistent case, we propose to proceed in the
following way. First, apply IPFP to the densities from
Ξ getting, according to formulae (7), a sequence of
densities κ0(xN ), κ1(xN ), κ2(xN ), . . .. From what was
said in Section 6, we know that this sequence certainly
does not converge. However, in agreement with our
conjecture presented in that section, we can get m
densities

κ∗1 = lim
j→+∞

κjm+1,

κ∗2 = lim
j→+∞

κjm+2,

...
κ∗m = lim

j→+∞
κjm.



Since κ∗i ∈ Π(πi) for all i = 1, . . . ,m, the distribution
ππππ(xN ) defined at each vector xN ∈ XN

ππππ(xN ) = min
i=1,...,m

(κ∗i (xN )) ,

ππππ(xN ) = max
i=1,...,m

(κ∗i (xN )) ,
(9)

must be a solution of the given inconsistent marginal
problem, because all κ∗i are from M(ππππ). Moreover, it
is obvious (due to Lemma 2) that ππππ is coherent.

The reader most likely noticed that this procedure is
also applicable to consistent Ξ, since, in this case,

κ∗1 = κ∗2 = . . . = κ∗m ∈ Π(Ξ)

and therefore formulae (9) give a solution of the same
form as (8).

Example 1 Let us consider three (inconsistent)
2-dimensional densities from Table 3. The computa-
tional process resulting from an application of IPFP
to these three densities is recorded in Table 6. When
observing the probabilities with the precision of 5 dec-
imal digits, the computational process stabilizes after
19 steps when it starts cycling among 3 densities κ19,
κ20 and κ21.

π1(x1, x2) x1

0.28 0.13
x2

0.25 0.34

π2(x1, x3) x1

0.50 0.31
x3

0.03 0.16

π3(x2, x3) x3

0.32 0.09
x2

0.35 0.24

Table 3: Inconsistent 2-dimensional densities

As we said in the previous section

lim
j→∞

κ3j+1
.= κ19 ∈ Π(π1),

lim
j→∞

κ3j+2
.= κ20 ∈ Π(π2),

lim
j→∞

κ3j
.= κ21 ∈ Π(π3).

which can easily be verified from Tables 3 and 6.

Since the densities π1, π2 and π3 are inconsistent,
Π(π1) ∩ Π(π2) ∩ Π(π3) = ∅, however, the interval-
valued solution of this inconsistent marginal problem
is a coherent distribution defined by formulae (9); see
Table 4.

Thanks to the presented approach we are always able
to find an interval-valued solution of a marginal prob-
lem in the form of a coherent distribution. As will
be seen from the next example, this solution is not

ππππ x1 = 0 x1 = 1

x2 = 0 x3 = 0 0.232− 0.272 0.073− 0.102
x2 = 0 x3 = 1 0.012− 0.026 0.036− 0.068
x2 = 1 x3 = 0 0.183− 0.229 0.150− 0.209
x2 = 1 x3 = 1 0.017− 0.035 0.123− 0.211

Table 4: Interval-valued solution resulting from the
computational process recorded in Table 6

unique. Namely, different orderings of oligodimen-
sional distributions entering IPFP may lead to dif-
ferent “limit” distributions appearing in the cycle
lim

j→∞
κmj+1, lim

j→∞
κmj+2, . . . , lim

j→∞
κmj .

Example 2 Consider again the same three inconsis-
tent 2-dimensional densities from Table 3 as in Ex-
ample 1. Table 7 presents selected steps of the com-
putational process resulting from application of IPFP
to these densities in the ordering π1, π3, π2. This time
the process starts “cycling” (when considering again
the precision given by 5 decimal digits) after 16 steps.
Notice that the following limit formulae hold due to
the different ordering of the input densities

lim
j→∞

κ3j+1
.= κ16 ∈ Π(π1),

lim
j→∞

κ3j+2
.= κ17 ∈ Π(π3),

lim
j→∞

κ3j
.= κ18 ∈ Π(π2).

The resulting interval-valued solution is in Table 5.

ππππ x1 = 0 x1 = 1

x2 = 0 x3 = 0 0.236− 0.283 0.083− 0.104
x2 = 0 x3 = 1 0.012− 0.024 0.035− 0.067
x2 = 1 x3 = 0 0.182− 0.233 0.167− 0.214
x2 = 1 x3 = 1 0.016− 0.030 0.121− 0.211

Table 5: Interval-valued solution resulting from the
computational process recorded in Table 7

8 Tightening of a solution

The method proposed in the previous section has one
great disadvantage: the constructed solution of an in-
consistent marginal problem is usually not tight. In
the examples presented in this section we shall see
that none of the solutions from Tables 4 and 5 is
tight. The goal of this section is to show that this
disadvantage can easily be corrected.



000 001 010 011 100 101 110 111

κ0 .125 .125 .125 .125 .125 .125 .125 .125
κ1 .14 .14 .125 .125 .065 .065 .17 .17
κ2 .26415 .01585 .23585 .01415 .08574 .04426 .22426 .11574
κ3 .24158 .02373 .17941 .02615 .07842 .06627 .17059 .21385
...

...
...

...
...

...
...

...
...

κ19 .25485 .02515 .21511 .03489 .07356 .05644 .15036 .18964
κ20 .27114 .01257 .22886 .01743 .10184 .03670 .20816 .12330
κ21 .23263 .02296 .18329 .02973 .08737 .06704 .16671 .21027
κ22 .25485 .02515 .21511 .03489 .07356 .05644 .15036 .18964
κ23 .27114 .01257 .22886 .01743 .10184 .03670 .20816 .12330
...

...
...

...
...

...
...

...
...

Table 6: Iterative Proportional Fitting Procedure applied to π1, π2, π3

000 001 010 011 100 101 110 111

κ0 .125 .125 .125 .125 .125 .125 .125 .125
κ1 .14 .14 .125 .125 .065 .065 .17 .17
κ2 .21854 .06146 .14830 .10170 .10146 .02854 .20170 .13831
κ3 .29786 .01130 .20214 .01870 .10375 .02737 .20625 .13263
...

...
...

...
...

...
...

...
...

κ16 .26726 .01274 .23235 .01765 .09491 .03509 .21393 .12607
κ17 .23614 .02397 .18222 .02948 .08386 .06603 .16778 .21052
κ18 .28222 .01345 .21778 .01655 .10331 .03820 .20669 .12180
κ19 .26726 .01274 .23235 .01765 .09491 .03509 .21393 .12607
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

Table 7: Iterative Proportional Fitting Procedure applied to π1, π3, π2

Theorem 2 A distribution ππππ(xN ) is a tight solution
of a marginal problem given by a system of densities

Ξ = {π1(xK1), π2(xK2), . . . , πm(xKm
)}

iff (i) it is a solution, and

(ii) ∀xN ∈ XN ∃i, j ∈ {1, 2, . . . ,m}

ππππ(xKi
) = πi(xKi

)
ππππ(xKj ) = πj(xKj ).

(10)

Proof. First, realize that if ππππ is a solution then, due
to Definition 2, for all ` = 1, 2, . . . ,m

ππππ(xK`
) ≤ π`(xK`

) ≤ ππππ(xK`
). (11)

If, in addition to this, condition (ii) holds, then no
ππππ(xN ) may be increased without violating condition
(11) because it would have also increased all the
respective marginal low boundaries ππππ(xK`

). Anal-
ogously, also no ππππ(xN ) may be decreased without
breaking condition (11) and therefore ππππ is tight.

Let ππππ be a tight solution and assume condition (ii) is
not fulfilled. It means there is a point xN such that
either

ππππ(xK`
) < π`(xK`

)

or
ππππ(xK`

) > π`(xK`
)

holds true for all ` = 1, 2, . . . ,m. Without loss of
generality assume the former inequality is valid and
define a distribution κκκκ in the way that it equals ππππ at
all vectors of XN except for the considered vector xN .
For this vector define:

κκκκ(xN ) = ππππ(xN ) + min
`∈{1,...,m}

(π`(xK`
)− ππππ(xK`

))

κκκκ(xN ) = ππππ(xN ).

Distribution κκκκ is defined in the way that it is a solu-
tion of the marginal problem given by system Ξ (i.e.,
κκκκ(xK`

) ≤ π`(xK`
) ≤ κκκκ(xK`

) for all ` = 1, . . . ,m) and
κκκκ ⊂ ππππ, κκκκ 6= ππππ, which contradicts the definition of
tightness.

Theorem 2 may serve as a basis for a simple tightening
procedure. Its simplest version recomputes values of
a solution ππππ in a cycle over all xN ∈ XN :

ππππ(xN ) := ππππ(xN ) + min
`∈{1,...,m}

(π`(xK`
)− ππππ(xK`

)),

ππππ(xN ) := ππππ(xN )− min
`∈{1,...,m}

(ππππ(xK`
)− π`(xK`

)).

Notice that using the previous “program-style” for-
mula, which contains the same symbol ππππ(xN ) on both
sides, we stress that, at each step of the cycle, we have
to compute the marginal distributions ππππ(xK`

) from



the last updated version of ππππ. Table 8 presents the
result of the simplest version of the tightening process
when applied to a distribution from Table 4.

ππππ x1 = 0 x1 = 1

x2 = 0 x3 = 0 0.247− 0.271 0.073− 0.101
x2 = 0 x3 = 1 0.013− 0.022 0.037− 0.068
x2 = 1 x3 = 0 0.200− 0.229 0.150− 0.209
x2 = 1 x3 = 1 0.017− 0.029 0.123− 0.211

Table 8: Tight interval-valued solution received from
the solution in Table 4

A slightly more sophisticated version of this process
orders the points xN in the cycle according to a de-
creasing value of ππππ(xN ) − ππππ(xN ). This strategy was
applied to the solution from Table 5. Before this,
however, all probabilities from Table 5 were cut to 2
decimal points, since all the input densities were also
given with this precision, so the resulting tight dis-
tribution, which is contained in Table 9, has all the
probabilities with two decimal digits.

ππππ x1 = 0 x1 = 1

x2 = 0 x3 = 0 0.25− 0.27 0.07− 0.11
x2 = 0 x3 = 1 0.01− 0.03 0.03− 0.06
x2 = 1 x3 = 0 0.18− 0.23 0.17− 0.20
x2 = 1 x3 = 1 0.02− 0.04 0.13− 0.20

Table 9: Tight interval-valued solution received from
the solution in Table 5

9 Conclusions

We introduced a new notion of an interval-valued so-
lution of a marginal problem; this solution always ex-
ists, even in cases when input marginal distributions
are inconsistent. We showed that even a tight solution
is not unique. Perhaps, some tight solutions are bet-
ter than others. Therefore, it would be nice to have
a criterion comparing tight solutions and enabling us
to define optimal solution(s).

The tightening process presented in the last section
could be applied to any solution, i.e., also to a triv-
ial distribution, which is a solution to any marginal
problem:

ππππ(xN ) = 0, ππππ(xN ) = 1.

However, the resulting tight solution would rarely pos-
sess reasonable properties, so we propose to find a so-
lution to be further tightened with the help of IPFP.
In connection with this aspect, we want to recall that
an effective implementation of this procedure was de-
signed in [8, 9]. It is based on an idea that all of the
densities are represented in a form of decomposable
models. This type of representation substantially in-
creases the size of tractable problems. So it may hap-

pen (in special situations) that one finds a solution
which cannot be further tightened, since the compu-
tation in a cycle over all vectors xN is not possible
because of the size of XN .

Let us recall that the process of finding a solution
of an inconsistent marginal problem with the help of
IPFP is based on a conjecture, whose proof remains
a challenge for future research.
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[12] L. Rüschendorf, Sharpness of Fréchet-Bounds. Z.
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