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Abstract

Every F-probability (= coherent probability) F on a
finite sample space Ωk with k elements defines a set of
classical probabilities in accordance with the interval
limits. This set, called “structure” of F , is a convex
polytope having dimension ≤ k−1. We prove that the
maximal number of vertices of structures is exactly
k!.

Keywords. Geometry of interval probability, num-
ber of vertices of structures/cores/credal sets, combi-
natorial theory of polyhedra, 0/1-matrices.

1 Introduction

There is a famous subclass of F-probabilities = coher-
ent probabilities (terminologies of Weichselberger [10]
and Walley [8] respectively) on finite sample spaces,
for which the computing and counting of the ver-
tices of the corresponding structures are algorithmi-
cally very easy: the class of 2-monotone capacities (=
C-probabilities in Weichselberger’s terminology). It is
well-known that the structures of 2-monotone capac-
ities on the sample space Ωk with k elements have at
most k! vertices and that this bound is sharp.

Inspired by this and by the visible barycentric rep-
resentation of structures for k = 1, 2, 3, 4 (where
the classes of C- and F-probabilities coincide for k =
1, 2, 3) Weichselberger expressed the following con-
jecture in the early 1990s, i.e., at the beginning of his
theory of interval probability:

Weichselberger conjecture (WEC). The struc-
tures of all F-probabilities on Ωk have at most k! ver-
tices.

For more than one decade many efforts were made to
find a counterexample or to verify Weichselberger’s
conjecture.

We here prove him right.

For everyone who is a little bit familiar with coher-
ent (= F-) probabilities and the description of ver-
tices of polyhedra in general, Sections 2, 3, and 4 are
mainly boring as regards content, but not as regards
the special nomenclature used here for the sake of
convenience.

Section 2 formally defines F-probability, C-probability
and structure, and Section 3 is concerned with ba-
sic facts about polyhedra and their vertices. Section
4 embeds structures of F-probabilities on Ωk isomor-
phically into the space IRk, for convincing that they
“are in fact polytopes” which are, moreover, defined
by 0/1-matrices, and for preparing that apart from
this the F-property of F-probabilities is not needed to
obtain the result.

The core, and in fact new part, is Section 5, where
the (WEC) is proven.

Section 6 is reserved for concluding remarks.

2 F-probabilities, C-probabilities, and
their Structures

Here we report very briefly the main concepts of
Weichselberger’s theory of interval probability (see,
e.g., [10]), in particular the concepts of F- and C-
probability and, indispensably, of their structures.

Just as in classical probability theory, the starting
point is some fixed measurable space (Ω; A), where
Ω is a non-empty sample space and A is a σ-algebra
over Ω. Here we only want to deal with the finite case.
Hence we assume that Ω is finite, w.l.o.g. Ω = Ωk :=
{1, . . . , k} with k ≥ 1, and A = P(Ωk), i.e., the
power set of Ωk. The members A of P(Ωk) are called
events, and, in particular, the singletons Ei := {i},
i = 1, . . . , k, are called atoms.

2.1. Definition.
(a) A set function p: P(Ωk) → [0; 1] is called a K-

function (or classical probability) on (Ωk; P(Ωk)),



if it satisfies Kolmogorov’s axioms, i.e.,

(i) p(A) ≥ 0, ∀A ⊆ Ωk;
(ii) p(Ωk) = 1 (norm condition);
(iii) p is additive, i.e., p(A ∪ B) = p(A) + p(B),

∀A, B ⊆ Ωk with A ∩B = ∅.
The set of all K-functions on (Ωk; P(Ωk)) is de-
noted by Kk.

(b) A quadruple F = (Ωk; P(Ωk); L, U) is called
an F-(probability) field on (Ωk; P(Ωk)), if L, U :
P(Ωk) → [0; 1] are set functions such that

M(F) :=
{p ∈ Kk|L(A) ≤ p(A) ≤ U(A), ∀A ⊆ Ωk}

is not empty and L(A) = minp∈M(F) p(A),
U(A) = maxp∈M(F) p(A), ∀A ⊆ Ωk.

(c) The set M(F) according to (b) is named the
structure of F . ¤

Sometimes structures are also called cores (see, e.g.,
[6]) or credal sets (see, e.g., [4]).

There are four basic properties of F-fields:

2.2. Corollary. Let F = (Ωk; P(Ωk); L, U) be an
F-field. Then we have:

(a) L(.) ≥ 0.

(b) L(∅) = 0.

(c) L(Ωk) = 1 (i.e., L is normed).

(d) U(A) = 1− L(Ωk\A), ∀A ⊆ Ωk. ¤
Proof. (a), (b) and (c): straightforward. For (d) use
p(A) = 1− p(Ωk\A), ∀A ⊆ Ωk, ∀p ∈ Kk. ¤
It is possible to describe the structure of an F-field
only by its lower limit L:

2.3. Corollary. Let F = (Ωk; P(Ωk); L, U) be an
F-field. Then

M(F) = {p ∈ Kk| p(A) ≥ L(A), ∀A ⊆ Ωk} (1)

already determines the structure of F . ¤
Proof. Straightforwardly with Corollary 2.2(d). ¤
As a special subclass of F-probabilities we make a note
of C-probabilities = 2-monotone capacities:

2.4. Definition. A quadruple C =
(Ωk; P(Ωk); L, U) is called a C-(probability) field on
(Ωk; P(Ωk)), if the following conditions are satisfied:
(a) L(.) ≥ 0.
(b) L(∅) = 0.
(c) L(Ωk) = 1.
(d) U(A) = 1− L(Ωk\A), ∀A ⊆ Ωk.
(e) L is 2-monotone, i.e., L(A)+L(B) ≤ L(A∩B)+

L(A ∪B), ∀A, B ⊆ Ωk. ¤

2.5. Lemma. Every C-field on (Ωk; P(Ωk)) is an
F-field on (Ωk; P(Ωk)). ¤
Proof. E.g., see [3]. ¤
The consideration of F- and C-fields, in particular the
geometrical properties of their structures, will be con-
tinued in Section 4 — after fixing some basic facts
about polyhedra and their vertices.

3 Basic Facts about Polyhedra and
their Vertices; the psi-Function

In this section we give the usual definitions of poly-
hedra, polytopes, and their vertices and, moreover,
introduce some notational conventions.

3.1. Conventions.

(a) For every finite set X let |X| be the cardinality
of X.

(b) The components of x ∈ IRk are denoted by
x(1), . . . , x(k).

(c) For x, y ∈ IRk let 〈x, y〉 be the usual scalar prod-
uct of x and y, i.e., 〈x, y〉 :=

∑k
i=1 x(i)y(i). ¤

3.2. Definition. Let X ⊆ IRk.
(a) X is called a polyhedron, if X is a finite inter-

section of closed affine halfspaces of IRk, i.e.,
if there exist n ∈ IN, a1, . . . , an ∈ IRk, and
β1, . . . , βn ∈ IR such that

X =
⋂n

i=1{x ∈ IRk| 〈ai, x〉 ≥ βi}. (2)

(b) A polyhedron X is called a polytope, if X is
bounded.

(c) A point x of a polyhedron X is called a vertex of
X, if ∀y, z ∈ X ∀λ ∈ ]0; 1[

(
x = (1−λ)y+λz =⇒

x = y = z
)
. The set of all vertices of X is denoted

by E(X). ¤

There is a well-known — but generally very ineffective
— procedure for finding all the vertices of some given
polyhedron. We describe it in the following lemma,
point (a).

3.3. Lemma. Let X ⊆ IRk be a polyhedron of the
form (2).

(a) If x ∈ X, then x is a vertex of X iff there
are indices i1, . . . , ik ∈ {1, . . . , n} such that
{ai1 , . . . , aik

} is a basis of IRk and 〈aij , x〉 = βij ,
∀j = 1, . . . , k.

(b) |E(X)| ≤ (
n
k

)
. ¤

Proof. For (a) see, e.g., [5], 7.2(b), p. 122; (b) follows
from (a). ¤



The estimation in Lemma 3.3(b) has the big disad-
vantage that it is very weak in general, but it has the
advantage that it does not depend on a1, . . . , an and
β1, . . . , βn. Subsequently we steer a middle course:
We fix a1, . . . , an ∈ IRk and ask for the maximal
number of vertices the corresponding polyhedra can
have, if we let β1, . . . , βn vary over all (!) real num-
bers, i.e., if we allow all parallel translations of the
defining hyperplanes.

For approaching this problem in a terminologically
convenient manner, we now take a closer look at the
definition (2) of a polyhedron X, which will lead to
specific notation.

First, it is usual to employ the matrix-vector-style for
an equivalent description of the polyhedron X: X is
the solution space of the system

A · x ≥ b, (3)

where A :=
(

a1
.
.
.

an

)
and b :=

(
β1
.
.
.

βn

)
, if we consider

a1, . . . , an as row vectors and x as a column vector
in IRk. But subsequently we do not need the descrip-
tion (3). Instead it will be more comfortable to use a
functional style which is, moreover, close to the “lan-
guage” of interval probability: Since w.l.o.g. we can
assume that a1, . . . , an are different and since the or-
der of a1, . . . , an is irrelevant, the relation ai 7→ βi,
i = 1, . . . , n, is a function, and it is possible to rep-
resent X equivalently by

{x ∈ IRk| 〈a, x〉 ≥ L(a), ∀a ∈ A≥}, (4)

if we put A≥ := {a1, . . . , an} and L: A≥ → IR,
L(ai) := βi, i = 1, . . . , n (L stands for lower bound).

Secondly, of course it is feasible to incorporate into (4)
linear equations 〈a, x〉 = L(a) by letting a, −a ∈ A≥
and writing 〈a, x〉 ≥ L′(a) ∧ 〈−a, x〉 ≥ L′(−a), where
L′(a) := L(a) and L′(−a) := −L(a) (w.l.o.g. L(a) =
0, if a = 0, because we can presume that X is not
empty). But, in order to avoid boring transformations
when dealing with linear equations, we replace (4) by

{x ∈ IRk| 〈a, x〉 ≥ L(a), ∀a ∈ A≥}
∩ {x ∈ IRk| 〈a, x〉 = L(a), ∀a ∈ A=}

for an appropriate finite set A= ⊆ IRk. Moreover, it
is handy to assume A= ⊆ A≥.

We summarize:

3.4. Definition. Let A≥ ⊆ IRk be finite, L: A≥ →
IR, and A= ⊆ A≥. Then we define:

(a) M(L) := {x ∈ IRk| 〈a, x〉 ≥ L(a), ∀a ∈ A≥}.
(b) M(L, A=) :=

M(L) ∩ {x ∈ IRk| 〈a, x〉 = L(a), ∀a ∈ A=}. ¤

3.5. Corollary. LetA≥ ⊆ IRk be finite and L: A≥ →
IR. Then we have:

(a) M(L) = M(L, ∅).
(b) B= ⊆ A= ⊆ A≥ =⇒

E(M(L, A=)) ⊆ E(M(L, B=)). ¤

Proof. (a) is trivial, and (b) follows from the fact
that M(L, A=) is a face of M(L, B=), if B= ⊆ A=

(see, e.g., [5], p. 123ff). ¤
3.6. Definition. We define

BAS(A≥) := {B ⊆ A≥| B is a basis of IRk}

for any A≥ ⊆ IRk. ¤
Using this abbreviation and the notations introduced
in Definition 3.4 we can rewrite Lemma 3.3(a):

3.7. Corollary. LetA≥ ⊆ IRk be finite, L: A≥ → IR,
and A= ⊆ A≥. Then we have:

(a) E(M(L, A=)) =⋃{M(L, A= ∪ B)| B ∈ BAS(A≥)}.
(b) E(M(L)) =

⋃{M(L, B)| B ∈ BAS(A≥)}. ¤

Proof. (a) can be deduced straightforwardly from
Lemma 3.3(a), and (b) follows from (a) and Corollary
3.5(a). ¤
Note that in Corollary 3.7 all the sets M(L, A= ∪B)
and M(L, B), B ∈ BAS(A≥), are empty or singletons
(cf. Proposition 5.2).

Now we formally define the maximal number of ver-
tices the polyhedra M(L, A=) can have, letting L
vary over all real-valued functions with domain A≥:

3.8. Definition. Let A≥ ⊆ IRk be finite and A= ⊆
A≥. Then we define:

(a) ψ(A≥, A=) :=
max{|E(M(L, A=))| |L : A≥ → IR}.

(b) ψ(A≥) := ψ(A≥, ∅) =
max{|E(M(L))| |L : A≥ → IR}.

We refer to ψ(A≥, A=) and ψ(A≥) as the psi-function
of (A≥, A=) or A≥ respectively. ¤
Therefore, both versions of the psi-function (itself)
only depend on the dimension k of IRk.

3.9. Corollary. Let A≥ ⊆ IRk be finite. Then we
have:

(a) B= ⊆ A= ⊆ A≥ =⇒ ψ(A≥, A=) ≤ ψ(A≥, B=).

(b) A= ⊆ A≥ =⇒ ψ(A≥, A=) ≤ ψ(A≥). ¤

Proof. (a) is a consequence of Corollary 3.5(b), and
(a) implies (b). ¤



4 Making the Goal Smooth

In this section we will see that structures of F-prob-
abilities on (Ωk; P(Ωk)) are “in fact” polytopes in the
space IRk. Moreover, we will establish a relationship
between their maximal vertices and both versions of
the psi-function introduced in Section 3, which makes
the goal, i.e., (WEC), “smooth” for its proof.

First, we interpret the elements p of Kk as vectors in
IRk with components p(E1) = p({1}), . . . , p(Ek) =
p({k}), and for brevity we write p(1), . . . , p(k). All
the values p(A), A ⊆ Ωk, are determined by these
components due to the axiom of additivity:

p(A) =
∑k

i=1 1A(i)p(i), ∀A ⊆ Ωk,

where 1A is the indicator function of A, i.e.,

1A(i) :=
{

1, if i ∈ A
0, else.

Indicator functions 1A are also vectors in IRk, only
having components 0 or 1. Such vectors are called
0/1-vectors. To simplify notation, we subsequently
write A instead of 1A. In particular, the empty event
∅ corresponds to 0 ∈ IRk, and Ωk corresponds to
(1, . . . , 1) ∈ IRk. Analogously, P(Ωk) can be seen
as the set of all 0/1-vectors in IRk, and the atoms
E1, . . . , Ek form the standard basis of IRk. Note that
E1, . . . , Ek are also K-functions (Dirac measures),
and the (k−1)-dimensional simplex spanned by those
is exactly the set Kk:

Kk = {p ∈ IRk| 〈Ωk, p〉 = 1 ∧
〈Ei, p〉 ≥ 0, ∀i = 1, . . . , k}. (5)

Now let F = (Ωk; P(Ωk); L, U) be an F-field. If we
rewrite equation (1) of its structure by

M(F) = {p ∈ IRk| 〈A, p〉 ≥ L(A), ∀A ∈ P(Ωk)} ∩ Kk

and take into account that L(.) is non-negative and
that L(Ωk) = 1 according to Corollary 2.2, (a) and
(c), we infer from (5)

M(F) = {x ∈ IRk| 〈A, x〉 ≥ L(A), ∀A ∈ P(Ωk)}
∩ {x ∈ IRk| 〈Ωk, x〉 = L(Ωk)}.

Using the terminology introduced in Definition 3.4(b)
we conclude:

M(F) = M(L, {Ωk}). (6)

In particular, M(F) is a polyhedron in the space IRk,
and, since it is bounded by the simplex Kk, M(F) is
a polytope with dimension ≤ k − 1. For k ≤ 4 it is
possible to make structures visible using barycentric
coordinates: cf. Figures 1–4.

If we would prefer a matrix-vector-style for the de-
scription of M(F), we would have, let’s say for k = 4,
the following system of inequalities:




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 1




·




x(1)
x(2)
x(3)
x(4)


 ≥




L((0, 0, 0, 0))
L((1, 0, 0, 0))
L((0, 1, 0, 0))
L((0, 0, 1, 0))
L((0, 0, 0, 1))
L((1, 1, 0, 0))
L((1, 0, 1, 0))
L((1, 0, 0, 1))
L((0, 1, 1, 0))
L((0, 1, 0, 1))
L((0, 0, 1, 1))
L((1, 1, 1, 0))
L((1, 1, 0, 1))
L((1, 0, 1, 1))
L((0, 1, 1, 1))
L((1, 1, 1, 1))




,

supplemented by the norm condition

(
1 1 1 1

) ·




x(1)
x(2)
x(3)
x(4)


 = L((1, 1, 1, 1)). (7)
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Figure 1: An F-field F = (Ω3; P(Ω3); L, U) using the
barycentric representation. The probability intervals P (.) =
[L(.); U(.)] are given by

P (∅) = [0; 0]
P (E1) = [0.20; 0.40]
P (E2) = [0.30; 0.55]
P (E3) = [0.20; 0.48]

P (E1 ∪ E2) = [0.52; 0.80]
P (E1 ∪ E3) = [0.45; 0.70]
P (E2 ∪ E3) = [0.60; 0.80]

P (Ω3) = [1; 1].

Since k = 3, F is a C-field. Hence it is possible to de-
scribe the 3! = 6 structure vertices A, B, C, D, E, and
F by the characteristic equations (9). For example, consider
pD = (0.20, 0.32, 0.48) ∈ K3 given by the point D: We have
pD(E1) = 0.20 = L(E1), pD(E1 ∪ E2) = 0.52 = L(E1 ∪ E2),
and pD(Ω3) = 1 = L(Ω3).



Now let
MF

k

be the maximal number of vertices of structures of F-
fields on (Ωk; P(Ωk)). Our goal is to prove

MF
k = k!.

First we say a word to the statement MF
k ≥ k!.

For this, let MC
k be the maximal number of vertices of

structures of C-fields on (Ωk; P(Ωk)). By Lemma 2.5
we trivially get MF

k ≥ MC
k . But for C-fields the max-

imal number of vertices, and moreover the description
of the vertices itself, is well-known and easy (e.g., see
[6], Theorem 3, p. 19, or [1], Proposition 13, p. 277):

Let C = (Ωk; P(Ωk); L, U) be a C-field. Then, char-
acteristically, we have p ∈ E(M(C)) iff there exists a
permutation π of {1, . . . , k} such that p = pπ, where
pπ is defined by

pπ(Eπ(i)) = L
(⋃i

j=1 Eπ(j)

)
− L

(⋃i−1
j=1 Eπ(j)

)
(8)

for i = 1, . . . , k, or — equivalently — by

pπ

(⋃i
j=1 Eπ(j)

)
= L

(⋃i
j=1 Eπ(j)

)
(9)

for i = 1, . . . , k (cf. Fig. 1 and 2).1 Hence, on the one
1This correspondence between vertices and permutations is

false for every F-field which is no C-field (cf. Fig. 3 and 4).

A

(1, 0, 0, 0)
(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

 

Figure 2: An F-field F = (Ω4; P(Ω4); L, U) using the barycen-
tric representation. F is a C-field. E.g., we verify (9) and (8) by
considering the structure vertex pA represented by the point A:
pA is determined by pA(E1) = L(E1), pA(E1 ∪ E2) = L(E1 ∪
E2), pA(E1 ∪E2 ∪E3) = L(E1 ∪E2 ∪E3), and pA(Ω4) = 1 =
L(Ω4). Therefore pA = (pA(E1), pA(E2), pA(E3), pA(E4)) =
(L(E1), L(E1 ∪ E2) − L(E1), L(E1 ∪ E2 ∪ E3) − L(E1 ∪ E2),
1 − L(E1 ∪ E2 ∪ E3)). Here all the 4! = 24 structure vertices
of F can be obtained from pA by permuting its coordinates.
Hence F is a uniform C-field (cf. (10)).

hand, we get MC
k ≤ k!, but, on the other hand, there

are C-fields which have exactly k! structure vertices.

For example, consider a strict convex function f :
[0; 1] → [0; 1] with f(0) = 0 and f(1) = 1, e.g.,
take f(x) := x2, define L, U : P(Ωk) → [0; 1] by
L(A) := f

(
|A|
k

)
and U(A) := 1−L(Ωk\A), ∀A ⊆ Ωk,

and let C := (Ωk; P(Ωk); L, U). Then it is easy to see
that L is 2-monotone, and thus C is a C-field which,
in addition, is uniform (cf. Fig. 2), i.e.,

L(A) = L(B), ∀A, B ∈ P(Ωk) with |A| = |B|. (10)

It is a straightforward exercise to show that for C de-
fined like this the pπ’s according to (8) are pairwise
different. Hence |E(M(C))| = k! and thus MC

k = k!.

We summarize:

4.1. Lemma. MF
k ≥ k! for all k ≥ 1. ¤

Now we turn to the Weichselberger conjecture, i.e., to
the statement

(WEC) MF
k ≤ k! for all k ≥ 1.

•

A

B
C D

(1, 0, 0, 0)
(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

 

Figure 3: An F-field F = (Ω4; P(Ω4); L, U) using the barycen-
tric representation. F has 4! = 24 structure vertices, and as
examples we consider the vertices pA, pB , and pC correspond-
ing to the points A, B, and C respectively:

• pA is defined by pA(E3) = L(E3), pA(E3∪E4) = L(E3∪E4),
pA(E3 ∪ E4 ∪ E2) = L(E3 ∪ E4 ∪ E2),

• pB is defined by pB(E1) = L(E1), pB(E1∪E2) = L(E1∪E2),
pB(E1 ∪ E3) = L(E1 ∪ E3),

• pC is defined by pC(E1 ∪E2) = L(E1 ∪E2), pC(E1 ∪E3) =
L(E1 ∪ E3), pC(E1 ∪ E2 ∪ E3) = L(E1 ∪ E2 ∪ E3),

supplemented by pA(Ω4) = pB(Ω4) = pC(Ω4) = 1 = L(Ω4).
Since pB and pC do not respect the equations (9), F is no
C-field. Additionally, consider the point D: The correspond-

ing K-function pD, defined by pD

�Si
j=1 Ej

�
= L

�Si
j=1 Ej

�
,

i = 1, 2, 3, 4, lies outside the structure of F .



As mentioned in the Introduction, for k = 1, 2, 3 ev-
ery F-field is a C-field such that MF

k ≤ k! is true at
least for these three values of k. Moreover, in [9] it is
shown (with completely different methods) that, for
any k ≥ 1, the bound k! is valid for every uniform
F-field (in the sense of (10), cf. Fig. 2 and 4).

Here we prove the entire (WEC). For preparing this,
we propose two daring hypotheses. The first one is:

• “The conditions on the lower bound L of an F-
field are, compared with our problem, extremely
weak. So we forget them at all.”

This means: If we look at (6), we ignore the fact that
the L in the term M(L, {Ωk}) stems from an F-field.
We consider the polytopes M(L, {Ωk}) for any map
L: P(Ωk) → IR, hoping that the maximal number of
their vertices do not increase in comparison with the
smaller class of L’s which are lower bounds of F-fields.

In other words: Recalling the definition of the psi-
function in 3.8(a) we make the following conjecture:

(WAC1) ψ(P(Ωk), {Ωk}) ≤ k! for all k ≥ 1.

Hence (WAC1) implies (WEC).

The second hypothesis is:

• “The norm condition (like (7) for k = 4) does
not fit to the pattern of the remaining system of
inequalities. So we forget it.”

B

C

� � � � � � � � �

� � � � � � � � 	

 � �  � � � � �

� � � � � � � � �

Figure 4: A uniform (cf. (10)) F-field F = (Ω4; P(Ω4); L, U)
using the barycentric representation. The 4! = 24 structure
vertices of F can be divided into two parts: E•(M(F)) and
E◦◦(M(F)) marked by • and ◦◦ resp. Let pB , pC ∈ K4 corre-
spond to the points B and C resp. Then pB and pC are defined
like pB and pC in Figure 3. Hence F is no C-field. By the way,
each of the convex hulls, of E•(M(F)) and of E◦◦(M(F)), are
structures of uniform C-fields, each of them having “only a few”
vertices (12), but together “spanning” the whole structure of
F (see [9], Section 4.2, for more details on this subject).

Geometrically this hypothesis says the following: Let,
for fixed k, L: P(Ωk) → IR be a function such
that the corresponding polytope M(L, {Ωk}) has the
maximal number of vertices, i.e., |E(M(L, {Ωk}))| =
ψ(P(Ωk), {Ωk}). Then the (unbounded) polyhedron
M(L) (without “norm condition”) has no additional
vertex, although M(L, {Ωk}) is just a (lower dimen-
sional) face of M(L) (cf. Corollary 3.5).

Again recalling the definition of the psi-function —
now the second version in 3.8(b) —, the formal equiv-
alent of the second hypothesis is the conjecture

(WAC2) ψ(P(Ωk)) ≤ k! for all k ≥ 1.

By Corollary 3.9(b) we have ψ(P(Ωk), {Ωk}) ≤
ψ(P(Ωk)), and thus (WAC2) implies (WAC1).

In the next section we prove that indeed (WAC2) is
true. But beforehand, we store for later reference:

4.2. Lemma. (WAC2) implies (WEC). ¤

5 The Main Theorem

Now we concentrate on proving (WAC2). Let the nat-
ural number k ≥ 1 be fixed. As already partially in-
troduced in Section 4 we here officially (re-)define:

5.1. Definition.
(a) a ∈ IRk is called a 0/1-vector, if a(1), . . . , a(k) ∈

{0, 1}. The set of all 0/1-vectors in IRk is denoted
by P(Ωk).

(b) Every element of BAS(P(Ωk)) (cf. Definition 3.6)
is called a 0/1-basis. ¤

Clearly we have to deal with 0/1-vectors and 0/1-
bases for proving (WAC2). But as far as possible and
no additional work is needed, we will extend our view
to all vectors in IRk and to all bases of IRk.

We proceed in four steps, where our first goal is
Lemma 5.3.

5.2. Proposition. Let B = {b1, . . . , bk} be a basis
of IRk and x, y ∈ IRk. Then we have:

(∀ i = 1, . . . , k. 〈bi, x〉 = 〈bi, y〉) =⇒ x = y. ¤
Proof. Well-known. ¤
5.3. Lemma. Let A≥ ⊆ IRk be finite and A =
{a1, . . . , an} ⊆ A≥. Let B = {b1, . . . , bk} ⊆ A≥
be a basis of IRk such that there exist α1, . . . , αn ≥ 0
and β1, . . . , βk > 0 with

n∑

i=1

αiai =
k∑

i=1

βibi. (11)

Then for all functions L: A≥ → IR and all x, y ∈ IRk

we have (cf. Definition 3.4(b)):

x ∈M(L, A) ∧ y ∈M(L, B) =⇒ x = y. ¤



Proof. Let all the premises be given. Then x ∈
M(L, A) implies

〈ai, x〉 = L(ai), ∀ i = 1, . . . , n, (12)
〈bi, x〉 ≥ L(bi), ∀ i = 1, . . . , k, (13)

whereas y ∈M(L, B) implies

〈bi, y〉 = L(bi), ∀ i = 1, . . . , k, (14)
〈ai, y〉 ≥ L(ai), ∀ i = 1, . . . , n. (15)

Therefore we compute:

n∑

i=1

αiL(ai)
(12)
=

n∑

i=1

αi〈ai, x〉 =

〈
n∑

i=1

αiai, x

〉

(11)
=

〈
k∑

i=1

βibi, x

〉
=

k∑

i=1

βi〈bi, x〉
(13)

≥
k∑

i=1

βiL(bi)

(14)
=

k∑

i=1

βi〈bi, y〉 =

〈
k∑

i=1

βibi, y

〉
(11)
=

〈
n∑

i=1

αiai, y

〉

=
n∑

i=1

αi〈ai, y〉
(15)

≥
n∑

i=1

αiL(ai).

Hence, at all positions we have in fact “=”, in partic-
ular

k∑

i=1

βi〈bi, x〉 =
k∑

i=1

βiL(bi).

From (13) and β1, . . . , βk > 0 we conclude 〈bi, x〉 =
L(bi), ∀i = 1, . . . , k, hence, by (14), 〈bi, x〉 = 〈bi, y〉,
∀i = 1, . . . , k. Now Proposition 5.2 proves x = y. ¤
The goal of the second step is Lemma 5.8, which can
be understood as a condensation and interpretation
of the result developed in Lemma 5.3: it’s a step into
the dual space of IRk connecting vertices in the primal
space with simplices in the dual space.

5.4. Definition.
(a) For any set X ⊆ IRk let int(X) be the inte-

rior of X (w.r.t. the usual topology on IRk), i.e.,
int(X) := {x ∈ IRk | ∃ ε > 0. Bε(x) ⊆ X}, where
Bε(x) := {y ∈ IRk | || x − y ||< ε} and || . || is
some fixed norm on IRk.

(b) For any finite set A = {a1, . . . , an} ⊆ IRk let
conv(A) be the convex hull of A, i.e., conv(A) :=
{∑n

i=1 λiai|λ1, . . . , λn ≥ 0,
∑n

i=1 λi = 1}.
(c) For every basis B = {b1, . . . , bk} of IRk let

S(B) := conv({0} ∪ B), i.e., S(B) is the (k-
dimensional) simplex spanned by 0, b1, . . . , bk. ¤

5.5. Corollary. For every basis B = {b1, . . . , bk} of
IRk we have:

(a) S(B) =

{∑k
i=1 λibi | λ1, . . . , λk ≥ 0,

∑k
i=1 λi ≤ 1}.

(b) int(S(B)) =

{∑k
i=1 λibi | λ1, . . . , λk > 0,

∑k
i=1 λi < 1}. ¤

Proof. (a) is trivial, and (b) can be deduced straight-
forwardly from (a), since B is a basis of IRk. ¤
5.6. Definition. Two bases A and B of IRk are called
compatible if

int(S(A)) ∩ int(S(B)) 6= ∅.
Otherwise A and B are called incompatible. ¤
Clearly, compatibility is no equivalence relation on the
class of all bases of IRk, since it is not transitive. But
at least we get:

5.7. Corollary. Let A and B be bases of IRk. Then
we have:

(a) A and A are compatible.

(b) A and B compatible =⇒ B and A compatible. ¤
Proof. (a) is a consequence of Corollary 5.5(b), and
(b) is trivial. ¤
5.8. Lemma. Let A≥ ⊆ IRk be finite and
L: A≥ → IR. Then there exists an injective map

choiceL : E(M(L)) → BAS(A≥)

such that the image choiceL(E(M(L))) is a set of pair-
wise incompatible bases of IRk. ¤
Proof. Let A≥ ⊆ IRk be finite, and let L: A≥ → IR.
By Corollary 3.7(b), for every x ∈ E(M(L)) there ex-
ists a B(x) ∈ BAS(A≥) such that x ∈M(L, B(x)).
Define choiceL: E(M(L)) → BAS(A≥), x 7→ B(x).
From Corollary 5.5(b) and Lemma 5.3 we receive

∀x, y ∈ E(M(L))(B(x) and B(y) compatible =⇒ x = y
)
,

hence choiceL(E(M(L))) = {B(x)|x ∈ E(M(L))} is a
set of pairwise incompatible bases of IRk. By Corol-
lary 5.7(a) choiceL is also injective. ¤
On the one hand, in steps 1 and 2 we were not con-
cerned with the specific properties of 0/1-bases. This
alters in step 3, which has Lemma 5.12 as its goal. On
the other hand, in step 3 it will not be necessary to
deal with the lower bounds L like above: We will now
just consider 0/1-bases without regarding their roles
defining vertices of polyhedra.

5.9. Proposition. For every 0/1-basis B of IRk we
have S(B) ⊆ [0; 1]k. ¤
Proof. The claim follows from {0} ∪ B ⊆
{0, 1}k, which implies S(B) = conv({0} ∪ B) ⊆
conv({0, 1}k) = [0; 1]k. ¤
5.10. Definition. Let Volk be the k-dimensional vol-
ume, i.e., the Lebesgue measure on the Borel sets of
IRk. ¤



5.11. Lemma. For every 0/1-basis2 B of IRk we have
Volk(S(B))≥ 1

k! . ¤
Proof. For every basis B = {b1, . . . , bk} of IRk there
is a well-known formula for the volume of the simplex
S(B) (e.g., see [7], p. 374): Volk(S(B)) = 1

k! · |detB̄|,
where B̄ := (b1 . . . bk), if we consider b1, . . . , bk as
column vectors. Now let B especially be a 0/1-basis
of IRk. Since then B̄ is a matrix with integer entries,
its determinant d := detB̄ is also an integer. But
d 6= 0, since B is a basis of IRk. Hence |d | ≥ 1. ¤
5.12. Lemma. Every set of pairwise incompatible
0/1-bases of IRk has at most k! elements. ¤
Proof. Let B1, . . . , Bn be pairwise incompatible 0/1-
bases of IRk. Then we have:

n

k!
=

n∑

i=1

1
k!

5.11≤
n∑

i=1

Volk(S(Bi))

=
n∑

i=1

Volk(int(S(Bi)))
(∗)
= Volk

(
n⋃

i=1

int(S(Bi))

)

≤ Volk

(
n⋃

i=1

S(Bi)

)
5.9≤ Volk

(
[0; 1]k

)
= 1,

where (∗) follows from the assumption that
B1, . . . ,Bn are pairwise incompatible. ¤
Now, as our fourth and last step we just have to com-
bine the results of step 2 and step 3:

5.13. Main Theorem. ψ(P(Ωk)) ≤ k!. ¤
Proof. Let L: P(Ωk) → IR. According to the def-
inition of the psi-function (3.8(b)) we have to prove
that |E(M(L))| ≤ k!. By Lemma 5.8 there exists an
injective map

choiceL : E(M(L)) → BAS(P(Ωk))

such that choiceL(E(M(L))) is a set of pairwise in-
compatible 0/1-bases of IRk. Hence |E(M(L))| =
|choiceL(E(M(L)))| ≤ k!, where the inequality is a
consequence of Lemma 5.12. ¤
We conclude (cf. the definitions of (WAC2), (WEC),
and MF

k in Section 4):

5.14. Corollary.
(a) (WAC2) is true.

(b) (WEC) is true.

(c) MF
k = k! for all k ≥ 1. ¤

Proof.
(a) This is the statement of the Main Theorem.
(b) Follows from (a) and Lemma 4.2.
(c) Follows from (b) and Lemma 4.1. ¤

2The statement is also true for bases, in which all the vectors
have only integer components.

6 Concluding Remarks

How many vertices structures can have, is an impor-
tant question within the theory of interval probabil-
ity. For example, it is often necessary to minimize or
maximize linear functionals subject to structures, and
therefore the complexity of corresponding algorithms
could be estimated adequately. We here computed
the smallest upper bound for the number of vertices.
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