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Abstract

The paper gives sufficient and necessary conditions
for eventwise aggregation of various families of lower
probabilities, in particular, of coherent lower probabil-
ities, and properties of the corresponding aggregation
functions.
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1 Introduction

The eventwise aggregation appears in decision-making
theory, but it is also a good way for construct-
ing fuzzy (non-additive) measures. We should em-
phases, that well-known representations, including
distorted probabilities, decomposable measures, are
partial cases of eventwise aggregation for the one-
dimensional case [2]. The way of aggregation consists
in the following. Let (2 be a measurable space with an
algebra 2 and p1, ..., up, be fuzzy measures on 2, then,
using some monotone function ¢ : [0,1]"* — [0, 1] with
(0, ...,0) =0, p(1,...,1) = 1, we get the aggregation
w(A) = @ (1 (A), ..., un(A4)), A € A. It is clear that
the above conditions lead to that u is a fuzzy mea-
sure, but in practical issues we should also guarantee
that if fuzzy measures p1, ..., upn are in a family, say,
M, then their aggregation p is also in M. Such re-
quirement is usually called the condition of consensus
or inheritance.

This problem statement was investigated for proba-
bility measures in [5, 6], for belief measures in [8], for
possibility measures in [3], for decomposable measures
in [4]. Some recent results are given in [1], where (gen-
eralized) coherent lower probabilities and k-monotone
measures are of interest. This paper gives necessary
and sufficient conditions for aggregation functions if
W1, -, b are k-monotone, and only sufficient con-
ditions if p1, ..., are (generalized) coherent lower

probabilities, and presents ways for constructing ag-
gregation functions by means of multilinear exten-
sion [7]. By the way, it would be important to get
also necessary conditions for the pointed cases, giving
exact descriptions of such aggregation functions. This
problem is solved completely in the article.

The paper has the following structure. First we recall
some results obtained in [1], then we investigate fam-
ilies of aggregation functions by the technique, which
is similar to well-known constructions like the con-
dition ”avoiding sure loss” or "natural extension” in
the theory of imprecise probabilities [9], and finally
we prove that the sufficient conditions, found in [1]
for aggregation functions, are also necessary ones.

2 Preliminaries

Let Q@ = {wy, ...,wn} be a finite space with the algebra
2 = 22, A set function p : 2 — [0, 1] is called a fuzzy
measure [11] if

1) (@) =0, n(Q) = 1;
2) A,B €2, AC B implies u(A) < u(B).

Throughout the paper, we denote by Mg the set of
all fuzzy measures on 2A; py < o, pi, 2 € Mo if
p1(A) < ps(A) for all A € A; let p € Mo and p(B) #
0 then up is a fuzzy measure, which is expressed by
pp(A) = “(lfég,?), A € 2. The fuzzy measure i is
called the dual of u if i(A) = 1 — u(A), A € A. We
introduce into consideration the following families of
fuzzy measures:

Mp is the set of all probability measures on 2;

My ={pue Mo|3IP € Mp: u < P} is the set of all
lower probabilities on ;

Mo ={pe My|VBed,u(B)#0,AP € Mp: up <
P} is the set of all generalized coherent lower proba-
bilities on A;

Ms={peMog|VBeAIPe Mp:u< P, u(B) =



P(B)} is the set of all coherent lower probabilities on
2.

It is easy to check the following embeddings
Mo D M1 DMy D Ms.

Lemma 1 p € Ms iff for any B € A there exist
Py, P, € Mp such that n(ABUCB) < P (A)u(B) +
Py(C)(1 — p(B)) for all A,C € Q.

Further we will use pointwise multiplication xy =
(1Y1, -y Tryn) of vectors x = (r1,..,Tn), y =
(y1,---»yn) in [0,1]", and also the inverse operation
x/y = (x1/y1, ..., &n/yn) (in the case z; = 0, y; =0
we determine z;/y; = 0). We denote x <y if z; < y;,
1=1,..,n.

Let g = (91, ---,9n) be the n-tuple of g1, ...,g, € Mo
then any n-aggregation function ¢ : [0,1]™ — [0,1]
is characterized by ¢ o g € Mj, and this property
holds for any g € Mj and any measurable space
(©Q,20), on which the family M, is defined. Notice
that each aggregation function ¢ produces the map-
ping ¢ : M — My (we use the same notation ¢,
where ¢(g(A4)) = ¢ (g1(4), ...,gn(A)) for all A € A).
It is clear that an arbitrary function ¢ : [0,1]™ — [0, 1]
is not an aggregation function in general, because it
may not preserve monotonicity of p(g). The neces-
sary and sufficient condition on aggregation function
is given in

Proposition 1 A function ¢ : [0,1]" — [0,1] is an
n-aggregation function iff

1) ¢(0) = 0, ¢(1) = 1, where 0 = (0,...,0), 1 =
(1,...,1).

2) x,y € [0,1]", x <y implies p(x) < p(y)-

Denote the set of all aggregation functions by M.

Now we introduce families of aggregation functions,
which are closely related to My, k =1,2,3, P.

Mp = {<p € Mo |p(x +y) = o(x) + ¢(y)
for all x,y € [0,1]"};

M= {oeMolaeMpip<al;

My = {LpE/\;lo ‘VyE[O,l] Jo € Mp : p(xy) <
a(x)p(y) for all x € [0, 1]"};
/\;13: {(PEM()‘V)’E[O,I] 30&1,0426./\;{13:

p(xy +2(1 —y)) < ar1(x)p(y) + ax(z)
(1 — @(y)) for all x,z € [0,1]"}.

Remark Any ¢ € Mp is a linear function [5, 6],
ie. p(x) = Y, a;z;, where a; > 0,0 = 1,..,n,
S =1, x= (1, ..., Tn).

Next propositions show how families M, can be used
for aggregation and give some properties of them.

Proposition 2 Let ¢ € Mg then
1) p: M} — Mp iff o € Mp.
2) @ Mp = My, k=1,2,3, if p € M,.

Proposition 3 Let g = (g1,...,gn) be the n-tuple of
g1y Gn € My, k=1,2,3, and ¢ € My, then pog €
M.
It is easy to check the following embeddings
/\;103./\;113./\;123./\;{3.
The above results become more understandable with
the help of the algebra of fuzzy sets. Consider fuzzy
subsets of the space Z = {1,2,...,n}. Then by defini-
tion a fuzzy subset A of Z is a mapping 4 : Z — [0, 1].
Clearly fuzzy sets generalize ordinary crisp sets. In
this terminology, crisp sets are identified with their
characteristic functions, i.e. if A is a crisp set then
A(i) =11if i € A, and A(i) = 0 otherwise. We intro-
duce the following algebraic operations on fuzzy sets
to describe aggregation functions.

1) C = ANB (or C = AB) if C(i) = A(i)B(i),

1=1,..,n.

2) A is the complement of A if A(i) =1 — A(i), i =
1,...,n.

3) C = A+ Bif C(i) = A@G) + B(i), i = 1,...,n.
(This operation is interpreted as union for disjoint
crisp sets.)

4) AC B (or A< B)if A(i) < B(i),i=1,..,n.

The notion of fuzzy measure on the algebra 27 is gen-
eralized naturally to the algebra 2A consisting of all
fuzzy subsets of Z. By definition [12], a mapping
@ : A — [0,1] is called a fuzzy measure if

1) o(0) =0, 0(2) = 1;
2) A,B € A, A C B implies p(A) < ¢(B).

This enables to generalize all definitions for ordinary
fuzzy measures to fuzzy measures on 2L, in particular,
the fuzzy measure @ is called the dual of . if (A) =
1—¢(A4), A e A Let ¢ a fuzzy measure on 2 and
@(B) # 0 then pp is a fuzzy measure, calculated by

pp(4) = 2UE3 Aed

We will identify fuzzy subsets of Z and vectors in
[0,1]" by (A(1),...,A(n)) € [0,1]", where A € 2.
Then according to Proposition 1 ¢ is an n-aggregation
function if ¢ is a fuzzy measure on 2. With the help
of fuzzy sets, we can describe introduced classes of
aggregation functions as



Y€ ./}?lp if o(A+B) = ¢(A)+¢(B) forall A,B, A+
B e,

¢ € M if there exists a P € Mp such that ¢ < P;

€ /\212 if for any B € A (p(B) # 0) there exists a
P € Mp such that pp < P;

p € M if_for any B € 2l there exist P,P, € Mp
9(AB +CB) < Pi(A)p(B) + P (C)(1 —p(B)) for all
A C e

Let ¢ € My, k € {1,2,3,P}, and ¢ is the restric-
tion of ¢ to the algebra 24. It is easily seen that
@ € My, Such property allows to call introduced
classes of aggregation functions with the same name
as corresponding families of fuzzy measures, i.e. @ is
a probability measure for k¥ = P, lower probability for
k =1, ¢ is a generalized coherent lower probability
for k = 2, ¢ is a coherent lower probability for k = 3.

In [1] it is also investigated the problem how to extend
© € My, k € {1,2,3, P}, on 27 to the algebra 2 so
that its extension ¢ € M. It turns out, we can do
it by multilinear extension [7]. Here we will get other
extensions for fuzzy measures from M, and M3 by
means of constructions, which are similar to natural
extension in the theory of imprecise probabilities.

3 Descriptions of M, and M;
through constructions similar to
natural extension

We will use the following notations: R is the set of
all real numbers; Ry = {z € |x > 0} is the set of all
non-negative real numbers; Q is the set of all ratio-
nal numbers; Qi = {z € Qz > 0} is the set of all
non-negative rational numbers; [0, 1]g is the set of all
rational numbers in [0,1]; Z4 is the set of all non-
negative integers, i.e. Z; = {0,1,2,...}; N is the set
of all natural numbers, i.e. N={1,2,...}.

Further we will use the necessary and sufficient con-
dition of ¢ € M, which is known in the literature [9]
as ”avoiding sure loss”.

Lemma 2 Let o € My then ¢ € M, iff for any
a; € Ry, x; € [0,1]" with Y, c;x; < 1, we have
Yoiaip(x) < 1.

Remark Due to monotonicity of ¢, in Lemma 2 we
can suppose that >, a;x; = 1.

Corollary 1 Let ¢ € M, then ¢ ¢ My iff there
evist a; € Q1 , x; € [0, 1] such that ), a;x; <1 and
Yo aip (xi) > 1.

1Tt is natural to keep the same notations for classes of fuzzy
measures on 27 as for fuzzy measures on 29.

Proof. Let ¢ ¢ M, then Lemma 2 implies that there
exist a; € Ry, x; € [0,1]" such that ), a;x; < 1 and
Yoiaip(x) > 1. Let Y-, a0 (x5) = A, A > 1. The
expression ), a;X; can be considered as continuous
function of oy, x;. Therefore, it is possible to choose
Bi € Q, Bi > ai, yi € [0,1]g, ¥i > x; , such that
> Biyi < 01, where 6 € Q and § < A. Taking
= %, we get y_.viy: < 1, and also ), vip (yi) >
1EiD%<P(Xi) = 2 Bip(xi) 2 3 (%) = § >

Corollary 2 Let ¢ € M, then ¢ ¢ My iff there
ezist x; € [0,1]3, b € N, such that ), x; < bl and

Ei ' (Xz) > b.

Proof. We will use notations from Corollary 1. It is
clear that numbers «; can be represented as a; = %,
where b, b; € N. Multiplying left and right sides of in-
equalities from Corollary 1 on b, we get >, b;x; < b1,
> bip(x;) > b. Notice now that each item b;x;
or bjp(x;) can be represented as a finite sum of
x; or ¢ (x;) respectively, whence we get the result
required.[]

Now we recall some results linked with coherent lower
previsions [9]. It is of interest, because they can be
considered as aggregation functions. By definition,
© € My is a coherent lower prevision if for any y €
[0,1]™ there exist a P € Mp such that ¢ < P and

o(y) = P(y).

Proposition 4 Let o € M then the following state-
ments are equivalent

1. ¢ is a coherent lower prevision;

2. ¢ satisfies the following conditions:

(a) plax+cl) = ap(x)+¢, x,ax+cl € [0,1]",
ac€Ry, ceR;

(b) e(x+y) 2 p(x)+o(y), x,y,x+y € [0,1]";

(¢) p(x+y) < o(x)+o(y), x,y,x+y € [0,1]";

3. o (y) =sup{); aip(xi) — c| 3o, ix; Sy +cl,
x; €10,1]",¢c,a; € Ry } for all y € [0,1]™.

+
+

Lemma 3 Let ¢ be a coherent lower prevision then
p € Ms.

Proof. Let p(y) € (0,1). (Other cases, where
p(y) = 0 or o(y) = 0, are considered by anal-
ogy.) By definition, there exists P € Mp such that
v < P and ¢(y) = P(y). Introduce into considera-

tion Py, P, € Mp defined by P, (x) = I;D(Z‘y’;), Py(z) =

P2, then p(xy+2(1-y)) < P(xy+2(1-y)) =

P(xy) + P(z(1 —y)) = Pi(x)p(y) + P2(2)(1 — ¢(y)
for all x,z € [0,1]", i.e. ¢ € M3.0




Remark It is easy to check that any ¢ € M3 satisfies
conditions 2(b) and 2(c) from Proposition 4, but does
not 2(a) in general.

In the theory of imprecise probabilities there is an
important construction, called natural extension. It
allows to get a coherent lower prevision ¢ from ¢ €

/\;11 by

ely) = sup{Eaiw(Xi) —cl 2 ax; <y +cl,
i i
x; €[0,1]", ¢,a; € Ry } for all y € [0,1]".

By analogy, we introduce a class of aggregation func-
tions, which consists of generalized coherent lower
previsions. By definition, ¢ € My is a generalized co-
herent lower prevision if for any y € [0, 1]" there exists
a linear function L : [0,1]" — Ry with L(0) = 0 such
that ¢ < L and ¢(y) = L(y). It should be stressed
that L(1) # 1 in general.

Proposition 5 Let o € My then the following state-
ments are equivalent

1. ¢ is a generalized coherent lower prevision;

2. ¢ satisfies the following conditions:

(a) p(ax) = ap(x), x,ax € [0,1]", a € Ry ;
(b) p(x+y) = p(x) +o(y), x,y,x+y € [0,1]";

3. ¢ (y) =sup{); iy (x;)| 22, aixi <y, a; € Ry,
x; € [0,1]"} for all y € [0,1]".

Proof. Statements 1 and 2 are equivalent by Hahn-
Banach’s Theorem. It is easy to check the condition

o) 2 sup{ T (xi)‘ S axi < yoxi € 0,117,
(3 (3
a; € Ry} for all y €[0,1]7,
is necessary that ¢ is a generalized coherent lower
prevision and sup is always achieved. And finally, it is

sufficient to check that the function with the property
3 satisfies conditions 2. O

We introduce the construction like natural extension
for generalized coherent previsions by

Eaixi LY,X; € [07 l]na

¢ (y) =sup { ZOMP (xi)
a; € Ry} for all y € [0,1]", and any ¢ € M.

Then ¢ is a generalized coherent lower prevision.

Lemma 4 Let p be a generalized coherent lower pre-
vision then ¢ € Ms.

Proof. Let o(y) # 0. By definition, there exist a
linear function L : [0,1]" — Ry with L(0) = 0 such
that ¢ < L and ¢(y) = L(y). Introduce into con-

sideration P € Mp defined by P(x) = LL(Z‘y’;), then

p(xy) < L(xy) = P(x)p(y) for all x € [0,1]", i.e.

(NS ./\;13. O

Remark It is easy to check that any ¢ € M, satisfies
condition 2(b) from Proposition 5, but does not 2(a)
in general.

Lemma 5 ¢ € M, iff for any y € [0,1]"

¢(y) = sup { 2 aip (XiY)‘ 2aixi <1 (1)

(2

x; € [0,1]", a; € Ry }.

Proof. According to the definition ¢ € M if for any
y € [0,1]" (¢(y) # 0) ¢y € M, where py(x) =
%. Taking this into account, the necessary and
sufficient condition from Lemma 2 is written as follows

m
1> sup{ o £Y) a;x; < 1,
zi: ©(y) Z;

X; € [0,1]", a; € ]R—I—}

Multiplying both sides of the last inequality on ¢(y),
we get

> aixi < 1,

sup { Z%"P (xiy)
X; € [0, 1]",ai € ]R—I—}

ey =

It is clear that sup is always achieved in the above
expression, i.e. the lemma is proved. O

Corollary 3 Let ¢ € M, then ¢ ¢ My iff there
ezist y € [0,1]", x; € [0,1]g, i € Qt, such that
Yiaix; <1 and 3, aip (xiy) > ¢ ().

Proof. Let ¢ ¢ My then Lemma 3 implies that there
exist y,x; € [0,1]", a; € Ry, such that ) a;x; <1
and 37, 00 (xiy) > @(y). Let 35 aip(xiy) =
Ag(y), where A > 1. The expression ), a;x; with
values in R} can be considered as a continuous func-
tion of a;,x;. It enables to choose o € Q, o} > «;,
x'; € [0,1]g, x"i > xy, such that ) ;aix’; < 61,
where 6 € Q and 6 < A. Denoting o} = a;,
we get » . afx’; < 1, in addition, ), af¢ (x;y) >
Yiale(xiy) = 5 X, alp (xiy) > 52 aip (xiy) =
250 > o (y).0

Corollary 4 Let p € My then o ¢ My iff there exist
y € [0,1]", x; € [0,1]&, d € N such that ), x; < d
and 3, ¢ (xiy) > dp (y).



Proof. We will use notations from Corollary 3. The
numbers a; can be represented as a; = %, where
d,k; € N. Multiplying left and right sides of inequal-
ities from Corollary 3 on d, we get >, k;x; < d1 and
Y. kip (xiy) > dp(y). Notice that each item k;x;
or kip(x;y) can be represented as a finite sum of
x; or @ (x;y) respectively, whence we get the result

required.]

Proposition 6 Let ¢ € M, and

ply) =

sup {E aip (aiy) |3 cuai < 1, 2)
a; € [Ov l]nvai € ]R+}a

where y € [0,1]". Then p € M>.

Proof. Since under the condition ¢ € Ml,
Yiaip(ay) < 1for ), aza;y < 1, ie. sup always
exists in (2), in addition, the function ¢ is monotone
and p(1) = 1,ie. p € M.
given by B

Consider the function v,

vix) = sup {z ap o) [Sam<x
€[0,1]",ai € Ry },

where x € R} y € [0,1]". It easy to check that

1) $(0) = 0, (1) = p(y);

2) (cx) = c(x), x €KL, c € Ry

3) p(x+2) > Y(x) +9(z), x,z € RY}.

With the help of Hahn-Banach’s Theorem we argue
that there is a linear function L : R} — Ry (L(0) =
0), such that ¢» < L and ¢(1) = L(1). On the other

hand,
p(xy) = sup {E a;p (a;xy) Za a;x < X,
[0 1] y A E ]R-I—}
ie. p(xy) < ¥(x) < L(x) for all x € [0,1]", therefore,
—(pg,(();); < % P(x), where obviously P € Mp.0

The function ¢ can be considered as the natural ex-

tension of ¢ to the class of aggregation functions M.
Actually, Lemma 5 and Proposition 4 imply that

o(y) = inf {v(¥)lv € Mo, v > 0}, y € [0,1]".
Proposition 7 ¢ € Ms iff for any y € [0,1]"

oly) =

sup { Yaip(xiy +2i(1—y)) -
Saix; < (e+1)1,) a;z; < cl, (4)
[0,1]”,6“,06 ]R—F}

X, Z; €

Proof. Necessity. Let ¢ € Ms; _then for any
y € [0,1]™ one can find P;,P, € Mp, such that

p(xy +2(1-y)) < Pi(x)p(y) + P(z)(1 - ¢(y)) for

all x,z € [0, 1]™. For the sake of convenience, suppose

that domains of the linear functions P, P> are R,

then for ), a;x; < (c+ 1)1, Y, 04z; < cl, X4,2; €

[0,1]", a;,c € Ry, we get

Y (xiy +2zi(1—y)) —c<
2 (Pu(xi)e(y) + Pa(zi)(1 — ¢(y))) —c=

Pr(ixi) oly) + P2 (3;20) (1 —¢(y)) —c=

e(y)) —c=

P ((c+ D) o(y) + P (c1) (1 -
(c+Dp(y) + el =¢(y)) —c=@(y).
One can see that sup is always achieved in (4).

Sufficiency. Let ¢ obey (4) then ¢ € M, by Lemma
5. Further, we will consider ¢ (xy +z(1 —y)) as a
function of (x,z) € [0,1]™ x [0,1]" for a fixed y €
[0,1]™, also introduce into consideration the auxiliary
function

P(x,2) = sup { Y aip(aiy +bi(1—y)) - C‘

Zaz (a;,b;) < (x,2) +¢(1,1), (5)
“ai, b € [0,1]", s, ¢ € R, Y.

Notice that the last formula is the natural extension
of p (xy +z(1 —y)). It exists if there is a linear func-

tion L : [0,1]™ x [0,1]™ — [0,1] with L(0,0) = 0 and
L(1,1) = 1, such that ¢ (xy +z(1 —y)) < L(x,z) for
all (x,z) € [0,1]™ x [0, 1]™. Since ¢ € Mo, this func-

tion may be chosen as L(x,z) = P (xy +z(1 —Yy)),
where P > ¢ and P € Mp. Hence, 9 is a coherent
lower prevision. It means that for any (x,z) € [0,1]"x
[0,1]™ there is a linear function L : [0,1]™ x [0,1]" —
[0,1], such that L > ¢ and L(x,z) = ¢¥(x,z). On
the other hand, the right sides of (4) and (5) coincide
for (x,z) = (1,0), hence p(y) = L(1,0). Taking this
into account, we get ¢ (xy +z(1 —y)) < ¢(x,2) <
L(x,z) = L(x,0) + L(0, z).

Let p(y) € (0,1), consider linear functions P (x) =
L(x,0) Py(z) = L(02) 1t is clear that P,P, e Mp

L(1,0)’ — L(0,1)"
and ¢ (xy +2(1 —y)) < PL(x)p(y) + P2(z)(1-¢(y))
i.e. p € M3. The cases p(y) =0,

~—

for all x,z € [0,1]",
p(y) = 1 are considered by analogy. P» € Mp is
chosen arbitrary for p(y) = 0, PL € Mp is chosen
arbitrary for ¢(y) = 1.0

Corollary 5 Let ¢ € Mg then ¢ ¢ Ms iff there
exist y € [0,1]n ; G0y € Q+? Xi,2; € [0)]—]8’
such that ) . o;x; < (¢ + 1)1, Y, oz < cl
Y g (xiy +2i(1—y)) > ¢ (y) +c

Proof. Let ¢ ¢ Ms then Proposition 5 implies



that there exist y,x;,z; € [0,1]", ¢,z € Ry,
such that >, a;x; < (¢ + 1)1, Y, a;2; < cl
Yiaip(xy+zi(1—y)) > ¢(y) +c It is clear
that ¢ can be taken in Qp. (If ¢ ¢ Q4 then
we can exchange ¢ to any rational ¢, for which
e(y) +¢ < q < ), aip(xiy+2i(1-y)).) Let
g (xy +2zi(1 —y)) = Ap(y) +¢), where A >
1. The expression ). a; (x;,2;), taking its values in
R} x R?, can be considered as a continuous function
of a;, (x;,z;). It enables to choose o € Q, af >
i, (x'5,2';) € [0,1]g x [0,1]5, (xi,2"5) > (xi,2i),

such that >, o} (x';,2';) < 0((1,0) + ¢(1,1)), where
6 € Q and § < A. Denoting af = %, we get
Yoo (x'y,2';) < (1,0) +¢(1,1), in addition,

Yoje(xiy+7zi(l-y)) >

Y (xiy +2z(1-y)) =

LY e (xiy +2i(1 —y)) >
)

K3
éEm@(XJ+Zz( -y))

A(w() )>¢() c. O

Corollary 6 Let ¢ € M, then ¢ ¢ Ms if there
are 'y € [0,1]", x;,z; € [0,1]5, b € Z4, d €
N, such that ) . x; < (b+d)1, > ,z; < bl and
2 (xiy +2i(1—y)) >dp(y) +0.

Proof. We will use notations from Corollary 3.
The numbers ¢, a; can be represented as ¢ = Z,
o = "i, where b,k; € Zy, d € N. Multiplying
left and right sides of inequalities from Corollary 5
on d, we get » . kix; < (b+d)1, X, kiz; < bl
and ), ki (x;y +2;(1 —y)) > dp(y) + b. Notice
that each item k;x;, k;z;, or k;p(x;y +2:(1—y))
can be represented as a finite sum of x;, z;, or
¢ (x;y +z;(1 —y)), respectively, whence we get the
result required.C]

Proposition 8 Let ¢ € M, and

ply) = sup { > aip(aiy +bi(l-y)) -
. <ecl, (6

i
Zaiai < (C+ 1)172041'1)@
aiabi € [07 1]n>aiac € R—F})

where y € [0,1]". Then p € Mj.

Proof. Consider the function 1, calculated by (5)
for a fixed y € [0,1]". Then ¢(y) = %(1,0),
and, since 1 is a coherent lower prevision, for any

(x,2z) € [0,1]™ x [0,1]™ one can find a linear function
L :[0,1)" x [0,1] — [0,1], such that L > ¢ and
L(x,z) = ¢(x,z). Thus, for (x,z) = (1,0), as in the

above proposition, we imply that there are P, P, €

Mp with ¥ (x,2) < Pi(x)o(y) + P2 (z)(1
all x,z € [0,1]™. On the other hand,

—(y)) for

pxy +2(l-y)) =
sup {Z aip ([aix + b (1 —x)]y+
[aiz +bi(1 —2)] (1 - y)) =
Zai [a;x + b;(1 —x)] <x+cl,
éai [a;z + b;(1 —z)] <
a;,b; € [0,1]", a;,c € Ry }.

The last expression implies that ¢ (xy +z(1 —y)) <
Y(x,z) for all x,z € [0,1]*. It means that

@ (xy +2(1- ¥)) < P (x Je(y) + P2(2)(1 = ¢(y)) for
all x,z € [0,1]", i.e. cpEMg

z +cl,

The function ¢ can be considered as the natural ex-
tension of ¢ to the class of aggregation functions Ms.

Actually, Propositions 5 and 6 imply that

p(y) = inf {v(y)lv € Mo, v >0}, y € 0.1"

In practical applications we can tackle the following
problem. Suppose that a function ¢|g is defined on a
set & C [0,1]™ and it is required to build the function

ply) = inf {r(y)lv € M,¥x € 6 v(x) > pe(®) |,

where y € [0,1], M can be chosen as a set of all
generalized coherent previsions, or of all generalized
coherent probabilities (M = Msy), or of all coherent
lower probabilities (M = M3). It is clear that this
problem is soluble if there exists a P € Mp with
P(x) > p|g(x) for all x € &. Taking in account the
resemblance with coherent lower previsions, further
such o is called the natural extension of ¢|g in M.
Without decreasing generality, we can assume that
0,1 € & and ¢|5(0) = 0, ¢;s(1) = 1. The explicit
expression of ¢ can be got by using the inner exten-
sion of ¢|s: ¢(y) =sup {p|s(x)|x >y, x € 6}, and
formulas (e.g. (2) and (6)), which give the explicit ex-
pression of natural extension in M. It is easy to see
that if & is finite then the practical calculation of ¢
is a linear programming problem. If & coincides with
the set of all Boolean vectors, i.e. & = {0,1}", IS
can be perceived as a set function. Next results show
that the last case is greatly simplified if M = My,
k=2,3.

Let Z = {1,..,n} and x € [0,1]" then we denote
Ay ={k € Z|z, = 1}, where x = (z1, ..., Zp).

Lemma 6 Let ¢ be a generalized coherent lower
probability on 27 ‘then the function p(x) = p(Ax),
x € [0,1]™, is in Ma.



Proof. To proof the lemma, it is sufficient to find
for any y € [0,1]™ a probability measure P € Mp
such that @¢(xy) < P(x)@(y) for all x,z € [0,1]".
Because ¢ is a generalized coherent lower probability
on 24, we can take a probability measure P on 27,
such that ¢ (BAy) < P(B)p(A4y) for all B € 22,
Further we take P € Mp with P(14) = P(A) for
all A € 2Z. Tt is worth to mention that P € Mp is
defined uniquely and such extension can be obtained
by multilinear extension. And finally, we notice that
Ay = AcAy, 3(y) = ¢ (4y), P(x) > P(Ay), and
P(xy) = ¢ (AxAy) < P (4x) ¢ (4y) < P(x)¢(y).0

Lemma 7 Let ¢ be a coherent lower probability on
27 then the function ¢(x) = p(Ax), x € [0,1]", is in
M.

Proof. To proof the lemma, it is sufficient to find for
any y € [0,1]™ probability measures P1,P2 € Mp
such that ¢(xy +z(1 —y)) < P (x)p(y) + Pa(z)(1 —
P(y)) for all x,z € [0,1]". Because ¢ is a coher-
ent lower probability on 24, we can take probability
measures P, P» on 27, such that ¢ (BAy + CA4y) <
Pi(B)p (Ay) + P (C) (1 — ¢ (Ay)) for all B,C € 27.
Further we take Py, P, € Mp with P (14) = Pr(A),
for all A € 27, k = 1,2. It is worth to mention
that P, P, € Mp are defined uniquely and such ex-
tensions can be obtained by multilinear extension.
And finally, we notice that Ayyi,1-y) € AxAy U
AAy, ¢(y) = ¢(4y), Pi(x) > P (Ax),Pa(z) >

P (Az), and ¢o(xy +2z(1—y)) < ga(A Ay UAAY) <

Py (Ax) ¢ (Ay) + P2 (A2) (1 — ¢ (4y)) < Pi(x)@(y) +
Py(z)(1 — ¢(y)).0

Example 1 Consider the fuzzy measure ¢ on 27,
where Z = {1,2,3}, defined by ¢({1,2,3}) =1
v ({1,2}) = 2/3, v ({2,3}) = 2/3, and ¢ is supposed
to be equal to zero on other sets in 27. It is easily
checked that ¢ is a generalized coherent lower prob-
ability, but not a coherent lower probability on 2%.
We can build a coherent lower probability, taking a
natural extension of ¢. As result, we get a coherent
lower probability ¢ such that ¢ ({2}) = 1/3 and ¢
is equal to ¢ on other sets in 2Z. It is easy to see
that ¢ is totally monotone or a belief measure on 2%.
Consider now various aggregation functions, gener-
ated by ¢. We denote by A the minimum operation,
and x = (21, %2, %3)-

@(x) = @(Ay) is the natural extension of ¢ in My by
Lemma 6.

Y(x) = p(Ay) is in M3 by Lemma 7. (¢ is the the
natural extension of ¢ in the set of coherent lower
probabilities M3.)

¢1(x) = 72+ 5 (£1 A22) + 5 (22 A z3) is the natural

extension of ¢ in the set of coherent lower previsions
(i.e. in usual sense) and @1 € Ms;

@2(x) = ¢1(x) A (221 + 2x3) is the natural extension
of ¢ in the set of generalized coherent previsions and
P2 € Mby;

@3(x) = 5 (2122) + 5 (2223) —

% (z122x3) is the mul-
tilinear extension? of ¢ and P35 € My ;

@4(x) = 22 + £ (z172) + 3 (z23) is the multilinear

extension of ¢ and @4 € M.
Next results give the simple expressions of natural

extension in My, k = 2,3, if we consider the one-
dimensional case of aggregation functions.

Lemma 8 Let we consider 1-aggregation functions
and M be a non-empty subset of My, k =1,2. Then

the function @(y) = sup{ (y)lv e M}, € [0,1] s

Proof. Let k = 2 then any v € M is characterized by
v(zy) < zv(y) for all z,y € [0,1]. Tt is clear that also
o(zy) < zp(y) for all z,y € [0,1], i.e. ¢ € Ms.

Let k = 3 then any v € M is bi-elastic [1, 10], i.e.
v(zy) < zv(y) and v(y + 2z) < (1 — 2)v(y) + z for
all z,y,z € [0,1]. It is clear ¢ is also bi-elastic, i.e.
p € M3. O

Lemma 9 Let & be an non-empty subset of (0,1),
¢ :6 = [0,1] and p(z) < = for all z € &, then the
natural extension N of ¢ in My, is given by

0, () = sup v (y), y €0,1],
zeS
_ (1) (2)
2, (y) = supmax {,), ()2, ()} v € [0.1]
where
) 0, 0<y<uz,
v, w) =13 p@y/z, v<y<l,
L, y=1
_ (A —e@) 1 -y)
v, ) = {1 Tz o OS¥<®
e(z), r<y<L

Proof. According to the definition

0. (y) = inf{y(y)|u € My, Yz € 6 p(z) < I/(:n)} :

2The multilinear extension of ¢ can be calculated with
the help of the Mobius transform m of ¢: m(A)
Spca (FD)IANBl(B), A € 2%, by the formula $3(x)

Y pczm(B)l;ep %, x €[0,1]™




Figure 1: The natural extension of ¢ in M.

It is easily checked that
V‘(wlip = inf {I/(y)|u € Ma,p(z) < I/(ZU)} ,
max {v[1)(y),v[2, () } =
inf {l/(y)|u € M3 : p(x) < l/(a:)} ,

where z € 6 and y € [0,1], i.e. I/‘(;’)w(y) < v, (y)
and max{yl(;?v(y),u‘(;?w(y)} < ply) for all y €
[0,1], ie. »,(y) > sup,es I/‘(;’)w(y) and @,(y) >
SUp, e Max {l/l(;?v(y), Vl(i)v (y)} On the other hand,
according to Lemma 8, the left side of the first in-
equality is a function in M, and the left side of the

second inequality is a function in M. This proves
the lemma.d

Example 2 Consider the function ¢ : & — [0,1],
where & = {0.4,0.8}, ©(0.4) = 0.2, »(0.8) = 0.6.
Then we construct functions P> k = 2,3, which are
depicted in Figures 1, 2.

4 Necessary conditions of
o MP = My, k=1,2,3

Next propositions are based on the following lemma.

Lemma 10 Let Z%zl T = b, where x, € [0,1]g,
m=1,....,M, b€ Zy. Then it is possible to construct
a finite probability space (Q,A,P), in which some
family of sets {Am}%z1 C A can be chosen as follows:
P(Ap) =am, m=1,...,M, "M 1,4 =blg.

Proof. Let b € N. (The case b = 0 is obvious.) Ra-
tional numbers z,, can be represented as z,, = '%",
where K € N, k,, € {0,1,..,.K}, m = 1,...,. M.
Choose probability space with @ = {1,..., K}, 2 =

Figure 2: The natural extension of ¢ in Ms.

22, P({m}) = & for any m € Q. Then the solving
problem can be formulated as follows. Given a set
of pairs of indices I = {(i,j)|i € ,5 € {1,...,b}}. Tt
is required to find a partition {Bj, Bs,...,Bap} of
(UM B,, = I, ByN By, = 0 for | #m), such that

m=1
1) |Bm| = km: m = ]-7 7Ma
2) <i7j1> € By, <i7j2> € By = j1 = Ja.
Then we choose A, = {i| (i,j) € Bn}.

Assign natural numbers to elements of [ in
dictionary order, i.e. suppose that the num-
ber of (i,j7) is N((i,j)) = i+ K(j — 1). It
is obvious that N ((i1,71)) > N ({i2,j2)) for
J1 > j2, and N ({i1,7)) > N ({i2,j)) for i1 > io.
Using this order, we fill up the sets By =
N{(i,g)e{bkr+ o+ km+ 1, k1 + ..+ km sy

By = {(,5) IN((i,j)) € {Kb—km +1,..., Kb}.
It is easy to see that sets B,, satisfy the
conditions required, namely, U%zl B, = I,

B, NBy =0 forl #m, |By| = kn, m =1,...M.
In addition, if (i1,71),{(i2,j2) € By, then

IN ((i1,51)) = N ((i2,52))] < km — 1. Suppose
now, the condition 2) is not fulfilled, i.e. there
are (i,j1),(i,j2) € By with j; > jy, then

N ((i,41)) = N ((i,42)) = K(j1 — j2) = km, which
contradicts to the inequality obtained.[]

Consider also the corollary of the above lemma, which
are used for proving properties of aggregation func-
tions of fuzzy measures from M, and Ms3.

Corollary 7 Let y € [0,1], XM =, = b+ d,
2%21 Zm = b, where Ty, zm € [0,1]g, m=1,..., M,
and b € Zy, d € N. Then one can construct a fi-
nite probability space (0,2, P), in which sets B € 2,
{zﬁlm}%:1 ,{C'm}%:1 C 2 have the following proper-
ties: P(B) =Y, P(Am) =InyY, P(Cm) = Zm(]-_y)f



m = ]‘7"'7M? Z%zl ]-Am = (b+d)1B’ Z%zl ]-Cm =
bls.

Proof. By Lemma 10, we can construct two prob-
ability spaces (', ', P"), A" = 2 QA" P,
A" = 22" in which sets {Am}i\f:1 cA, {C’m}%z1 C
A" have the following properties: P'(A,,) = zm,
P"(Cm) = 2mym=1,... M, M 14 = (b+d)1o,
2%21 l¢,, = blgr. In addition, we can suppose
that Q' N Q" = (. Further we construct the required
probability space (2,2, P), where 2 = 29'V92" and
P(A) =yP'(ANQ)+(1—y)P"(ANQ"), Ae Ttis
obvious that the probability measure P is well suited
for B=Q'.00

Consider some slight modification in the aggregation
of fuzzy measures. Let Qq,...,€Q, be finite, pairwise
disjoint nonempty sets, 2; be the power set of €2;, and
also Q@ = (Ji_, @, A = 29. Then for fuzzy measures
wi + A; — [0,1] the rule of aggregation, based on an
aggregation function ¢ : [0,1]" — [0,1], is defined
by /J’(A) = ¢ (,ul (A N Ql) y ey Um (A N Qn)): where
A € 2. We should stress that the last rule is a par-
ticular case of the considered eventwise aggregation,
because set functions uy (ANQy), ..., un (ANQ,) of
A € 2 can be considered as extensions of g, ..., tn
to the algebra 2. By the way, such rule of aggrega-
tion is more convenient in further investigations, since
values of 1 (ANQy), ..., un (ANQ,) can be chosen
independently.

Proposition 9 Let ¢ € Mo then p: My = My iff
p e M;.

Proof. We should prove only necessity (see Propo-
sition 2). Let ¢ ¢ M, then by Corollary 2 there
exist x; € [0,1]&, b € N, such that Ef\il x; < bl
and Elﬂilcp(xl) > b. Let X; = (mli,...,xm), then
by Lemma 10 we can construct probability spaces
(e, A, Pr), Ap = 29’“, k = 1,..,n, in which
sets {Akm}%zl C 2, are linked with the sequence
(:L’kl,...,l‘kM) by P(Akm) = Tkm, M = ].,...,M,
M 14, =b(la,). Let @ = Up_, O, A =22 (we
can suppose Q N Q; = 0 for k # 1), and consider the
aggregation of probability measures Py, k = 1,...,n,
produced by u(A4) = (Py (ANQ), ..., P, (AN D)),
A € A. Let us check that p € My. If it is
true, one can find P € Mp with P > pu. Since

ZZ:I Z%zl ]'Akm =b (]-Q)) we get
b b

iP(U:ZlAkm) =Y P@=Y1=u

i=1 =1

On the other hand,

M M
Z:lp(UZ:1 Akm) Z E ,U'(Uzzl Akm) =

m=1

¥ (Pl (Alm) R (Anm)) = % <P(Xz) > b.

1 i=1

PM=

The contradiction obtained implies that u ¢ M;.0

Proposition 10 Let ¢ € Mo then ¢ : My — My iff
p € M.

Proof. We should prove only necessity (see Propo-
sition 2). Let ¢ ¢ My then by Corollary 4 there
exist y € [0,1]", x; € [0,1]§, d € N, such that
Ef\il x; = d and Zf\il p(x;y) > dp(y). Let
yi = (yl,...,yn), X; = (xli,...,mm), then by Corol-
lary 7, for any k € {1,...,n} we can construct a finite
probability space (Qp,2, Py), Ax = 2%, in which
there are sets By, Agm € g, m = 1,...,M, with
Pe (Br) = yr, Pi(Apm) = Yopm, m = 1,..., M,
SM 14, =dlg,. Let Q= Ur_, Q, A =22 (we
can suppose that Q, NQ; = @ for k # 1, and the ag-
gregation of probability measures Py is produced by
w(A) = (PL(ANQ), ... Py (ANQ,)), A € 2. Let
us check that p € M,. If it is true then there exists
a P € Mp, such that u(AB) < PM(A)u(B) for
all A € A and B = J;_, Bi. It is clear that u(B) =
©(y), and also it is easy to see that P(!)(B) = 1. De-
note A, = Up_, Akm then Efle la, = dlg, and
we get

On the other hand,
M M
Eﬂ w(A,B) = 21 @ (P (A1mB1) ...y Py (ApmBr))

M
= > pxmy) >dp(y)-

m=1

The contradiction obtained implies that u ¢ M,.0

Proposition 11 Let ¢ € Mo then ¢ : Mg — Ms iff
p € Ms.

Proof. We should prove only necessity (see Propo-
sition 2). Let ¢ ¢ Ms then by Corollary 6 there
exist y € [0,1]", x;,2; € [0,1], b € Z4, d € N,
such that XM x; = (b+ d)1, XM, z; = bl and
Yo (iy +zi(l—y) > do(y) +b. Let y; =
(yl, ...,yn), X; = (Cﬂli, ...,.’Eni), Z; = (Zli,...,Zni), then
by Corollary 7, for any &k € {1,...,n} we can con-
struct a finite probability space (Q, %Ak, Pr), Ar =
22 in which there are sets By, Crm,Arm € Up,
m =1,..., M, with Py (Br) = Yk, Pr (Akm) = YrTrm,
Pk (Ckm) = (]-_yk)zkm; m = ]-7 "'7M) E%Zl ]-Akm =



(b+d)1p, SN 1c,, = blg,. Let Q = Up_, Qu,
2 = 29 (we can suppose that Q, NQ; = 0 for k #1),
and the aggregation of probability measures Py is
produced by u(A4) = (P (ANQ), ..., P, (AN D)),
A € . Let us check that p € Ms3. If it is true then
there exist P(), P(*) € Mp, such that u(ABUCB) <
PO (A)u(B)+ PP (C)(1—pu(B)) for all A,C € 2 and
B = J,_, Bg- It is clear that u(B) = ¢(y), also it is
possible to suppose that P(1)(B) =1 and P (B) =
1. Denote A, = Uj—; Akm, Cm = Uj—; Ckm, then

SM_ 14, =0+dip, M 1, =blg, and

M M

AnBUC,B) < p(B) Y P (A)+(1—p(B))
M b+d
> POCL) =0(y) Y PUB)+(1-¢y))

b
> PO(B) = (b+d)p(y) + (1 —p(y))b = dp(y) +b.

M —
On the other hand, ) u(A,BUC,B) =

m=1

M

Z @ (Pl (AlmBl U ClmBl) >"->Pn (Antn U Cntn))

m=1

M

= e (xy + (1 —y) > do(y) +b.

The contradiction obtained implies that u ¢ M3.0

5 Conclusion

This paper and [1] give us the full description of aggre-
gation functions (or functionals), which can be used
for eventwise aggregation of fuzzy measures from var-
ious families of lower probabilities, including lower
probabilities, generalized coherent lower probabilities,
coherent lower probabilities, k-monotone and belief
measures. This investigation covers also the one-
dimensional case, giving distorted probabilities (or
distorted fuzzy measures). For example, these results
allow to argue that each distortion function for co-
herent lower probabilities has to be chosen from the
family of bi-elastic functions [10]. One can see that
the aggregation problem leads to introducing vari-
ous functionals and constructions, which are similar
to the known ones in the theory of imprecise prob-
abilities like ”coherent lower previsions” or ”natural
extension”.
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