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Abstract and separation properties of Markov chains. Section 6

This papers investigates the computation of Iower/uppercondUdeS the paper.

expectations that must cohere with a collection of proba-
bilistic assessments and a collection of judgements ofepis  Credal sets and concepts of independence
temic independence. New algorithms, based on multilin-

ear programming, are presented, both for independenc&l

: .“We deal withcategoricalrandom variables. To distinguish
among events and among random variables. Separatiof : .
. . . ) random variables from (non-random) variables employed
properties of graphical models are also investigated.

in optimization problems, we refer to the latter agti-
mization variables

1 Introduction A set of probability measures induced by distributions

on random variableX is denoted byK (X) and called a
Among the concepts of independence that have been incredal set A joint credal seti(X) contains joint prob-
vestigated in connection with sets of probability measuresability measures for random variablés Conditioning
the concept okpistemic irrelevances probably the easi- is performed by applying Bayes rule to each measure in
est to explain — intuitively}” is epistemically irrelevant @ credal set; the posterior credal set is the union of all
to X if assessments aboiit do not change when we ob- posterior probability measures [17]. @onditionalcredal
serveY [33]. Epistemic independende the symmetric  Set K (X |A) contains conditional measures on the event
concept: X andY are epistemically independent if each A. Given a credal sek'(X), thelower expectatiorand
one is epistemically irrelevant to the other. Despite theirtheupper expectatioof a bounded functiorf(X') are de-
intuitive content, epistemic irrelevance and epistemic in fined respectively ag|[f(X)] = inf, x)erx) E[f(X)]
dependence are quite difficult to handle computationally.andE[f(X)] = sup, x)ek(x) E[f(X)], whereE[f(X)]
Given probabilistic assessments and judgements of episis standard expectation. Lower/upper probabilities are de
temic irrelevance, how can one compute lower and uppefined similarly, as are conditional lower/upper expecta-
expectations? tions/probabilities.

Our main contribution in this paper is to show that judge- We defer to future work the very important case of condi-
ments of epistemic irrelevance can generally be recastioning on events with zero probability [4, 9, 31]; here we
as multilinear constraints. We show how to compute assume throughout that any conditioning event has lower
lower/upper expectations that take into account epistemigrobability larger than zero.

irrelevance through multilinear programming. We ap-
ply our multilinear approach to multivariate models with

raph-theoretical representations, often called credal n — " .
graph-theoret cal represe tations, often ca ,?d c eela_ . E[f(X)]. Conditional lower and upper expectations also
works. We consider credal networks under “epistemic ir- . . ; . .

. S . N . ield linear constraints, ag[f(X)|A] = « is equiva-

relevance” and “epistemic independence” semantics, an(I)f

: ; . : ent to E[A(X)(f(X) —a)] = 0, where we used(X)
investigate separation properties of these networks. for the indicator function of eventi (this equation is

Section 2 presents a few relevant definitions and resultsWalley’s generalized Bayes ruli83]). If a collection of
Section 3 introduces our multilinear approach to epistemiclower/upper expectations defines a convex set of probabil-
irrelevance among events (Appendix A compares our apity measures, such that every constraintis tight, we say tha
proach to Walley’s algorithm for epistemic irrelevance). the lower/upper expectations ateherent We do not as-
Sections 4 and 5 look respectively into credal networkssume that every given set of constraints is coherent; we as-

Lower and upper expectations can be viewed as linear
constraints on probabilitiesE[f(X)] < Ep[f(X)] <



sume only that any set of constraints defines a non-emptpf this multilinear program yield$(3) € [0.3,0.79]. If
set of measures and thus can be made coherent by adjughe independence judgement is dropped, then linear pro-
ing some assessments. A set of constraints with this propgramming produceg(3) € [0.3,1.0]. O
erty is said taavoid sure 10s$33].

Unlike geometric programs, multilinear constraints lead t
__nonconvex primal and dual programs, and no known trans-
Jormation can convexify them. Existing solution methods

avoid sure loss. We call this largest set ttegural exten- produce sequences of sub-problems using either branch-

sionof the constraints, borrowing from Walley's terminol- &nd-bound or cutting-plane techniques [18, 20, 22, 26, 29)].
ogy [33]. The algorithms of Maranas and Floudas [22], and Gochet

and Smeers [18] produce convex nonlinear sub-problems,
Several concepts of independence can be used when onghile Sherali and Adams’ algorithm produces linear sub-
deals with credal sets [5, 10, 14, 33]. We review here threeproblems [26]. We employ Sherali and Adams’ branch-
non-equivalent concepts; relationships between them havand-bound algorithm in our calculations, as it is particu-
received considerable attention in the literature [8, #1, 2 larly appropriate for computing lower/upper expectations
— because the sub-problems generated by this method
are linear programs, column generation and other valuable
technigues can be employed [19].

In general, we are interested in tleggestset of proba-
bility measures that satisfies a given set of constraints
these constraints may be coherent or not, but they mu

The most commonly adopted concepisteong indepen-
dence! EventsA and B arestrongly independenthen
every extreme point of the underlying credal $étsatis-
fies standard stochastic independencel@nd B. Like- A different definition of independence is Kuznetsovs:
wise, random variable& andY are strongly indepen- andY are Kuznetsov independemthen the interval of
dent when every extreme point of the underlying credalexpected value&[f(X)g(Y)] is equal to the interval-
set satisfies standard stochastic independencE ahd  product of the interval€[f(X)] and E[g(Y)], for any
Y. Conditional strong independence (for events and forboundedf(X) and g(Y) [21]. Little is known about
random variables) is obtained by demanding that extremehe computation of lower/upper expectations under judge-
points satisfy stochastic independence conditional on anents of Kuznetsov independence; the available method
given event. Strong independence usually produces a mukvorks by explicitly constructing a joint credal set [10],
tilinear program, as the following example illustrates. a potentially complex operation that is not applicable to
large multivariate settings in any obvious way.
Example 1 Consider a generalized version of Boole’s ) _ .
challenge problem [19]. Take three Boolean random vari-A third concept of independence for credal setess-
ablesX,, X» and X3; random variableX; takes values (€mic independenc@2, 33]. In many ways, this is the -
i andi. We want to find tight bounds oR(X; = 3). concept with the most appealing definition, because it

Whenever possible we indicate the evefil§; = i} and ~ €an be given a direct behavioral interpretation. We now
{X; = i} simply byi andi, and we indicate conjunc- present the relevant definitions both for events and random

tion of eventsd A B simply by A, B. Suppose we have Vvariables:
P1) € [li,wm], A2) € [ly,uz], P1,3) € [ls,us],  Definition 1 EventA is epistemically irrelevanto event

P(2,3) € [la,us], P(1,2,3) = 0, with [; > 0. Sup- B given eventC when P(B|A,C) = PB|AL.C) =
pose also thak’; and X, are strongly independent; given  p B|C) and P(B|A, C) = P(B|A%, C) = P(B|C).

that relevant probabilities are positive, strong indepen- '

dence impliesP(1,2) = P(1)P(2) for every vertex of We indicate thatd is epistemically irrelevant t& given

K(X1,Xy). Definingp, = P(1,2,3), p» = P(1,2,3),  C byEIR(A, B|O).
p3s = P(1:2:3)! Ps = P(1:2:3)!p5 :AP(172:3),I)6 =

P(1,2.8), pr = A(1,2.3), ps = P12, 3), we have: Definition 2 Events A and B are epistemically in-
s 459)y PT — 3 4y9), P8 — s 499y .

dependentgiven eventC' when EIR(A,B|C) and

max /min pi + p; + ps +p7, Subjectto EIR(B, A|C).

Pr+p2+pst+ps=71, Pr+P2+Ps+Pe=T2  Definition 3 Random variableX is epistemically ir-

p1+p3s =73, p1+ps=7Ta, P1tp2=miTo, relevantto random variableY given eventC when

pr=0.p1+-+ps =11 <m <wui,pr > 0. E[f(Y)|X = z,0] = E[f(Y)|C] for any boundedf (V)
and anyz.

Suppose that; = 0.1, 1, = 0.2,13 = 0.1, Iy = 0.3,

uy = 0.5, us = 0.8, u3 = 0.3, anduy = 0.7. The solution  We indicate thatX is epistemically irrelevant t&” given
C by EIR(X,Y|C).

this topic [5, 8].

2Multilinear programming has also been related to other eptsc Definition 4 Random variablest and Y are epistemi-

of independence, for example independence in comparativeabili- cally independengiven event whenEIR(X,Y|C) and
ties [3]. FIR(Y, X|C).

1We should note that terminology is not completely standaaiion



where both minima are taken with respect to the under-
We indicate thatA and B are epistemically indepen- lying credal set. As we now show, it is possible to ex-
dent givenC by EIN (A, B|C). Likewise,EIN (X,Y|C) press irrelevance relations through multilinear constsai
indicates thatX and Y are epistemically independent To do so, introduce new optimization variablgsandy;,
given C. We can also have irrelevance and indepen-and generate the following inequalities (note that inequal
dence conditional on a random varialdfe as we restrict ity symbols are numbered, as their order is used later):
ourselves to categorical random variables, the judgement

EIR(X,Y|Z) simply means thaBIR(X,Y|Z = z) for vi <1 P(Bjl4;,C5) <4y,
every valuez of Z (and likewise for epistemic indepen- v, < P(Bj|AE, Cj) <5 uj, 2
dence). i < PBICH) <o

By clearing the denominators, these inequalities become
multilinear expressions on the,, v; and ;. Note that

we can clear the denominators given our assumption of
positive conditioning events.

3 Epistemic independence for events

In this section we propose a multilinear programming for-
mulation for the computation of upper expectations un-
der judgements of epistemic irrelevance of events. TheDenote byC, the set of assessmed$G; (F; — «;)] > 0,
computation of lower expectations can be tackled with theplus the constraintg, > 0 and the6r inequalities (2).
same methods. We focus on epistemic irrelevance as anjow constructr additional sets ofV optimization vari-
judgement of epistemic independence can be expressed ables. Denote by;; each one of thesér sets of opti-
two judgements of epistemic irrelevance. mization variables — there is one set for each judgement
. . ) of irrelevance (wherg = 1,...,r) and for each inequal-
Eﬁsnei',ﬁfnre‘ﬂf :fesizstr?]ee’ltsszglﬁ;vfgiﬂf) Supiose In (2) (wherel = 1,....6 indicates which inequaliy is

— ' used, following the numbering in (2)).
want to compute?(D) for an eventD. Suppose we have
N atomic events — each atomic event is a conjunction of The idea is simple. For each judgement of irrelevance and
events involved in assessments. Note tNatan be ex- each inequality, there must be a measure on the underly-
ponential on the number of assessments and judgementifg joint credal that satisfies the inequality with equality
Denote byp, the probability of thekth atomic event. The As each inequality may be satisfied with equality by a dif-

probability of any eventd can be written a9, Axpy, ferent measure, we must create as many measures as there

whereA,, is the indicator function ofi. Every assessment are inequalities. For example, optimization varialles

P(F;|G;) > a; can be encoded as will have to satisfyP(Bs| Az, C3) = us, or rather
E[Gi(X)(Fi(X) —a;)] 2 0, 1) P(43, B3, Cs) = psP(4s, Cs). ®)

whereG; (X) andF;(X) denote indicator functions (if the Thus we construdir sets of constraints. The set of con-
ith assessment is uncondition@l(X) = 1 for everyX). straintsC;; only refers to optimization variables i;;.

From now on we drop the argumekitwhenever possible The constraints are identical to the onegjnexcept that:
inside expectations. (1) instead of optimization variable, we haveg;; i; (2)

. thelth inequality is replaced by equality. We obtain a set of
Hence we can writéX D) asmax)_, Dypx, WhereDy  6r + 1 loosely coupled systems of multilinear constraints;
is the indicator function of even, subject to the linear  the connection between these systems is given by the
constraints?(F;|G;) > «a; (also expressed in terms of the andy;. By construction, we have:

pr). Note that we are only enforcing[F;|G;] > «;, not

thatE[F;|G;] = «;; if the assessments are not coherent, it Theorem 1 The value o D) is given bymax P(D) (as
may be impossible to enforce equality. Thus the flexibility a linear expression of) subject taCo, 3, pr = 1, Cj,
of Expression (1) seems appropriate in practice. and) , gjur=1forj=1,...,randl =1,...,6.

At this point we have encoded assessments (conditional or il hi | . e 1:
not) into a linear program, as usually done in probabilistic 10 llustrate this result, we revisit Example 1:

logic [19] — note that the “variables” of the linear pro- . .
: . Example 2 Consider the same assessments described
gram are the atomic probabilitigg. We emphasize: to . .
in Example 1, but replace the strong independence

avoid any confusion between random variables and theseucI ement with the epistemic independence iudaement
“variables” we refer to the latter as optimization variable Jucg P P Judg

FIN(1,2). To computeP(3) we must deal with 13 groups
Now consider that judgements of epistemic irrelevance of 8 optimization variables and approximately 300 con-
are given askIR(A;, B;|C;). These judgements are straints, many of which are multilinear. Our implemen-
harder to express, as eadIR(A;, B;|C;) introduces tation of Sherali and Adams’ method readily produces
constraints such asiin P(B;|A4;,C;) = min P(B,|C}), P(3) €10.3,0.85]. O



The previous discussion can be adapted to produce condableX; and withlocal credal setsThe local credal sets for
tional upper expectations of the for®(D|E). We start X, contains probability measures for random varialkle
with a fractional multilinear program where the objective conditional on the values of random variables thatpne
function ismax P(D, E)/P(E). Now definet = P(E); entsof X; in the directed acyclic graph. We denote parents
the objective function then ismaxt ', DyEypy. of X; by pa(X;) and local credal sets bl (X;|pa(X;)).
Given our assumption that> 0, we can multiply by ! We assume that local credal sets separately specified
both sides of constraints (1), (2) or (3). If we distribute thatis,K (X;|pa(X;) = m;) andK (X;|pa(X;) = n;) im-

t=! and replace every produtt'p; by a new optimiza-  pose no constraints on each otherfoe~ ;.

tion variablep! , and every produdt'g¢; ; » by a new op- . . .
Pl yp Gjit.k: DY P Here we are interested in semantics for credal networks

timization variabley’ , ., we obtain a multilinear program : o ) ;
. L - . . that are based on epistemic irrelevance; we thus consider
that is essentially identical to the original fractionalltiru S : )
two possible interpretations for a credal network [7]:

linear program. There are a few differences; most notably,
the objective function becomesax )", D Erp},, where ] ) ) , ]
E; denotes the indicator function @. Also, the defini- * The epistemic extension based on irrelevais¢he
tiont = A(E) leads to the constraint, Eypl, = 1. Fi- largest joint credal set sqch that nonc_lesce_ndant_s non-
nally, the unitary constrairlt, p = 1 becomes™, p} = parents of a random variahk; are epistemically ir-
t~1, and in fact this is the only constraint that contains relevant toX; given the parents ok’;.

— thus it can be suppressed in the presence of the other
constraints. Note that this technique mimics the Charnes-
Cooper transformation used in linear fractional program-
ming [6].

e The epistemic extension based on independence
simply epistemic extensioiis the largest joint credal
set such that nondescendants nonparents of a ran-
dom variableX; are epistemically independent &,

The techniques outlined in this section remain essentially ~ given the parents of;.

untouched if we consider assessments with functions of

random variables such a&[f;(X)|G;(X)] = a;; we These extensions are clearly based on different Markov
must then handle constraifi$G; (X)(f:(X) — a;)] > 0. conditions.

Note again that we translate the assessments into inequal'gt

ties (not equalities) as we admit assessements that may n uppose a credal network is given and we must compute
be cohere?mt Y%e upper probability?(Q|E), where@ and E denote

events defined by (possibly several). For the epistemic
Section 6 briefly compares our multilinear programming extension based on irrelevance, this computation can be
approach with Walley's iterative algorithm (presented in reduced to a linear program [7]. To understand this reduc-
Appendix A). tion, consider the judgement:
K(Xi|pa(X;),Yi) = K(Xj|pa(X;)), 4)

Y

4 Epistemic independence for random
variables: credal networks whereY; represents the nondescendants nonparenys,of
and the symbak indicates that credal sets must have iden-
o . o tical convex hulls. The right hand side of expression (4)
While judgements of epistemic independence betweeng ynown, as it is part of the network definition. So we

events imply a fixed number of equalities among lower 4 express constraints in the epistemic extension based on
and upper probabilities, epistemic independence betweefglevance by taking the constraints oVt X;|pa(X;))
random variables requires that credal sets have identical,q replicating them for all set& (X;|pa(X;),Y; = y;)

convex hulls — and these convex hulls can be rather COMsyp every valuey;
i

plex obje’cts. In Appendix A we derive a generalization he prohapilities of atomic events; as the number of atomic
of Walley's algorithm that deals with arbitrary judgments eyents is exponential on the number of random variables
of independence between random variables, but the resulty . \ve obtain a potentially large linear program

(2l .

ing method faces steep computational difficulties. Instead

of dealing with arbitrary judgements of independence, inHandling epistemic extensions based on independence
this section we focus on judgements that can be organizefﬁises more difficulties. Such extensions must Satisfy con-
using graph-theoretical tools. We explore compact rep-straints (4) and the “backward” judgements

resentations for credal sets that are inspired by Bayesian

networks and other graphical models [25]. K (Yi|pa(X;), X;) = K(Yi|pa(X;)), (5)

Constraints must be expressed owgr

We thus considesredal networkss our representation for where again we denote the nondescendants nonparents of
judgements of epistemic irrelevance and independence [1X; by Y;. Neither side of these constraints is directly spec-

2, 8, 15]. A credal network consists of a directed acyclic ified by the network. This difficulty is circumvented in a
graph where each node is associated with a random varibrute-force” manner by the only existing algorithm for



MULTILINEAR EXTENSION(X,pg)

X is a set of random variabl€; that constitute a network,

pr. IS a set of variables representing atomic probabilities dve
(1) Generatgy, > 0 forall £ and ", pr = 1.
(2) For every “forward” irrelevance judgement (4), generatonstraints that enforcé(X;|pa(X;),Y;) €
K(X;|pa(X;)) for every value ofY;, using the constraints fdi (X;|pa(X;)) in the network description.
(3) For every random variabl&;, and for every value;;:

(3.1) Introduce variableg; (Y;, pa(X;)), indexed by{Y;, pa(X;)}, and generate
constraints (one per value §¥;, pa(X;)})

¢i; (Y3, pa(X;)) x Ppa(X;), X; = xi;) = P(Y;, pa(Xi), Xs = x;5) X ZQij(Yi;pa(Xi))-
Y;

(3.2) Recursively call MILTILINEAR EXTENSION({Y;, pa(X;)}, ¢;; (Y3, pa(X;))) if the network
represented byY;, pa(X;)} has more than one node and contains irrelevance relatitivesydse
justimpose the (linear) constraints on this network aygefY;, pa(X;)).

Figure 1: The procedure WLTILINEAR EXTENSION.

epistemic extensions [7], which we call thé Blgorithm  P(pa(X;), X; = z;;) = PY;,pa(X;),X; = z;;). Note
(for Extensive Epistemic Extensiatgorithm). This al-  thatP(Y;|pa(X;), X; = z;;) stands for optimization vari-
gorithm explicitly builds each set appearing on the right ables indexed by; andpa(X;), while P(pa(X;), X; =
hand side of expression (5). This construction is exponenz;;) and P(Y;, pa(X;), X; = x;;) are not optimization
tial on the number of variables; even worse, the numbewariables; they simply stand for linear functions of the
of constraints grows extremely fast as it requires exponeneoptimization variablegp,. Our next step is to intro-
tially many projections of polyhedra (each one of which duce optimization variableg; (Y;, pa(X;)) that represent
with worst-case exponential complexity). Such complex-a “fresh” measure ovefY;, pa(X;)}; these variables are
ity level has prevented networks with more than four vari- again indexed by; andpa(X;). The “backward” con-
ables to be dealt with in practice. Alas, thé &lgorithm  straint (5) requires exactly that there must be a marginal
offers no clear path to approximation schemes — a frus-measure ovefY;, pa(X;)} such thatP(Y;|pa(X;), X; =
trating situation as it seems that approximation algorehm z;;) plays the role of a distribution far; conditional on

are a necessary route to follow. pa(X;). Thus we introduce the multilinear constraint
In the remainder of this section we offer a multilinear pro-

. . . . . i (Yi, pa(X; = Yilpa(X;), X; = x;;) X
gramming formulation for epistemic extensions. The al- 4 (Vi pa( X)) AYilpa(Xy), Xi = i)
gorithm we derive is significantly simpler to implement Z qi; (Y3, pa(X;)).
than the E algorithm, and it does not require an explicit Y;

construction of the epistemic extension. . . . Lo
The remaining problem is to constrain the optimization

Given a credal network, we start by defining the optimiza- variablesg;; (Y;, pa(X;)) so that they represent a valid
tion variableg;, as in Section 2; that is, these optimization marginal measure ovéd;, pa(X;)}.

variables represent atomic probabilities. We now formu-
late the question: what are the constraints gyesuch
that these optimization variables do represent a measure i
the epistemic extension? Clearly we must haye> 0

for all pg, the unitary constraint_, p, = 1, and the “for-
ward” judgements of irrelevance in Expression (4). These
latter constraints can be written following the replicatio
technique already discussed.

At this point it is reasonable to pause and try to build
some additional intuition for the status of the optimiza-
tion variablesg;;(Y;, pa(X;)). There is one such op-
timization variable for each combination of values of
{Y:,pa(X;)}. This set of optimization variables is intro-
duced to guarantee that, for a given set of optimization
variablesP(Y;|pa(X;), X; = z;;) that are part of the solu-
tion, we have a valid distribution in the sB(Y;|pa(X;))
Consider now a “backward” constraint (5). We must — this distribution is exactly represented by the optimiza-

guarantee thatP(Y;|pa(X;),X; = w=;;) belongs to tion variablesg;;(Yi|pa(X;)). Now the challenge is to
K(Yilpa(X;)) for each valuez;;. First we treat guarantee that;;(Y;|pa(X;)) in fact represent a distribu-
each value of (Yjpa(X;),X; = ;) as an op- tionin K (Y;|pa(X;)).

timization variable that is related to thg; through

the multilinear constrain®(Y;[pa(X:), X; = ) x To proceed, we must note th&¥;, pa(X;)} form atop

sub-network— that is, a sub-network such thatif; is in



pr > 0forall & P(2,3) x q35(1,2) = A(1,2,3) X (g3,3(1,2) + qs,a(i,g))
@ kak =1 o H273) X (13,3(}:2) = P(},273) X ((13,3(1:2) + q3,3(1-72))
¢ K1) < P1) < 1) P(2,3) x g3,3(1,2) = P(1,2,3) % (g3,3(1,2) + ¢3,3(1,2))
2(2‘1-) S P(2H') S B(Qu) P(2,3) X Q3,3(1:2) = P(12’3) X (Q3,3(1:2) + QS73(172))
(x)  mei<pei) <P ©
| ﬁ(gﬁi = 113((2133 5%8}33 (X1, X2) > 0,all X;, X
S 1) S q33(A1,A2) > U, all X1, X9 _
@ H3[2) < P312,1) < P(3)2) >oxix B33(X1, X2) =1, P(1) <gga(l) <H1)
P32) < P3I2,1) < A32) P21 < gsa(201) < P211),  P2IT) < ge.0(211) < 2T)
(@) (b) (d)

Figure 2: Example 3.

the sub-network then all ascendantd®f are in the sub-  constraints generated by the procedure at random variable
network. We now use the following property [7]: the nat- X;, which we denote b{(i), is recursively expressed as
ural extension of a top sub-network, taking into accountT'(i) = O(2¢) + 27 (i — 1), thus we havd (i) = O(i2?)
independence relations in the top sub-network, is alwayqthe number of linear constraints follows a similar pat-
equal to the marginal credal set obtained by marginaliz-tern). The total number of multilinear constraints is of
ing the complete epistemic extension. That is, if we “cut” order)__, O(i2¢), and thus of orde®(n2"). Given the

a top sub-network out of a credal network, and computeinherent complexity of epistemic independence, this ex-
the epistemic extension for this sub-network, we obtainponential growth is not surprising in exact calculations.
the same credal set we would obtain if we started with theHowever we can be more positive about the/IMILIN -
whole network and then marginalized the whole epistemicEAREXTENSION algorithm.

extension. Con_sequently, we can fomﬁ.(yi’pa().(i)) to First, even if the algorithm cannot deal with large net-
be a valid marginal measure by recursively calling the al- : -
works, it does allow us to address non-trivial networks —

gorithm on th(_e top sqb-network WIHI, pa(X) }. Note . certainly larger networks than the ones handled by the E
that no recursive call is needed when a network with a sin-

. . . algorithm. Consider a Markov chain with 5 nodés, to
gle node is processed (or a network with no independenc .
. ; i . 5. The MULTILINEAR EXTENSION algorithm leads to
relation). Each recursive call is applied to a smaller net-

) : 152 multilinear constraints, a number that can be easily

work; thus the procedure must terminate. The whole algo- . . , .

rithm is described in Figure 1 handled by existing multilinear programming algorithms
’ [13]. On the other hand the’&lgorithm cannot go beyond

a Markov chain with 4 nodes — because the algorithm re-

quires explicit manipulation of epistemic extensions, and

the extension of a Markov chain with 4 binary nodes typi-

cally contains millions of extreme points.

Example 3 Consider a Markov chain with three binary
random variables(;, X, and X3 (Figure 2.a). As in Ex-
ample 1, random variabl¥; takes valuesandi. Suppose
we have separately specified sét§X;) (specified by
(1) and A(1)), K (X2|X1) (specified byP(2|1), P(2|1), Second, the MLTILINEAR EXTENSION algorithm gener-
P2|1), P(2|1)), and K (X3|X>) (specified byP(3|2), ates a program with a rather modular structure that can be
P(312), A(3]2), P(3|2)). The epistemic extension must sat- explored by approximation techniques. Standard approx-
isfy EIN (X1, X3|X5). We have 8 variables, defined as  imations from multilinear programming can be used [20,
in Example 1. Figure 2.b shows some basic constraints oi29], or approximations that are specific to epistemic exten-
pr, implied directly by the local credal sets and the “for- sions can be investigated. Thé &gorithm offers no such
ward” irrelevance judgemenf/R(X;, X3/ X5). To sat-  path.

isfy the judgemenEIR (X3, X;|X2), introduce variables Third, depending on the independence relations expressed

g3,3(X1, X3), related to they, by multilinear constraints ) network, several simplifications may be possible — as
in Figure 2.c. These new variables are subject to con-

straints in Figure 2.d. We must also introduce vari<';1bles|”ustrateOI by the next example.
g 3(X1, X2), subject to constraints that are identical to Example 4 Consider the network in Figure 3,
those in Figures 2.c and 2.d. — except thds every-  taken from [7]. To processY;, we must enforce
where replaced by. O EIN (X1, (X3, X3, X4)): we need 16 constraints and we
must then enforc&IN (X5, X3) — however this second

The previous example can be easily extended to binaryudgement can be directly enforced without any multilin-
Markov chains withn. nodes® The number of multilinear ~ ear constraint. Likewise, we can enfor&N (X, X3)

3A Markov chain withn nodes has root nod&; and terminal node without any multilinear constraint. When we procesg

X, such that every nod¥; between them has a single paréit_; and we must enforce_E_IN(X4, (X1, X5)|X2= X3); to do so,
asingle childX;,1; X; has a single child an&,, has a single parent. ~ we need 32 multilinear constraints and then we must en-




force (among other thingshIN (X3, (X3, X2, X5)) and

EIN (X3, X5|X1, Xo) — however the latter judgement is @ @ @

redundant as it is implied by the formét.

Our experience indicates that multilinear programs with a @ @
few thousand variables can be solved with existing hard-
ware, thus indicating that a (not too dense) network con- Figure 3: Example 4.

taining about 10 to 12 nodes can be processed in reason-

able time. The limits of the algorithm depend on the net-

work topology (the density of connections in the network) of the semi-graphoid properties, thentractionproperty,
but also on the number of values of variables and the comf{ails for epistemic independence [11].

plexity of the local credal sets. Even though the viable

networks are still small, they can serve as testing groundeC
for approximate algorithms to be developed in the future

an separation properties of Bayesian networks be
xtended to epistemic extensions based on irrele-
" vance/independence? Some results are known: barren
Finally, consider the following question: given a joint nodes can be removed from a credal network to compute
probability (X1, ..., X,), does this measure belong to epistemic extensions based on irrelevance/independence
the epistemic extension of a network or not? With tie E [7]. In the next theorem we focus on separation in Markov
algorithm, the only way to answer this question is to con- chains — the theorem shows that evidence in a n¥ige
struct the whole extension and then test for inclusion. Themakes “upstream” nodes independent of “downstream”
multilinear formulation offers a more viable route, as we nodes.

can test whether a sequence of multilinear programs are

satisfied or not. The existence of an “inclusion test” may

lead to algorithms that generate distributions and test forl heorem 2 Consider a Markov chain withn nodes,
inclusion, detecting possible problems and modifying dis-With separately specified local credal sef§(X;) and
tributions gradually — we leave this path for the future. & (Xilpa(X;)) for i > 1, such that no conditioning
We close this section by noting that the algorithm is “in- €vent has zero lower probability. For < j < &,
cremental” in the sense that constraints are built in blocks EIN (Xi, Xi|X;) in the epistemic extension based on in-
and a new irrelevance judgement can be added with reladependence.

tively “local” changes on existing constraints alreadyltoui

by the algorithrf Proof. Consider first EIR(Xy, X;|X;) and the fol-
lowing inductive argument. It = j + 1, the ir-
5 Separation properties relevance is trivial: the Markov condition leads to

EIR(Xy, (X1,...,X;-1)|X;), and the direct decom-

In a Bayesian network, the computation of a conditional POsition property (a graphoid property [11]) can be
probability P(Q|E) typically does not require manipula- used to removeX; to X;_,, exceptX;. Now con-
tion of all nodes in the network [16]. Cafividencethe  sider j + I for I > 0; assumeEIR(Xj;, X;|X;).

set of random variable¥; that have their values fixed by The Markov condition and direct decomposition im-
the eventE. There are two kinds of nodes that can be dis- PlY EIR(X 141, (X5, X;)|X;14); by direct weak union,
carded giver andE: barren nodesind “top” nodes that ~ EIR(X;1i+1, Xi|(X;41, X;)). By reverse contraction,
are separated from by the evidence in thenoral graph ~ EIR(X;11, Xi|X;) and EIR(X 41, Xi(Xj41, X))
[27].5 In a Bayesian network, the value B{Q|E) can be  IMPly EIR((X+1, Xjt141), Xi]X;), and X1, can be re-
obtained in the sub-network without barren and separatednoved by reverse decomposition. The result is obtained
nodes and without nodes that defifie These separation Whenj +1+1=k.

properties have been elegantly condensed into the critegig,y considerEIR(X;, X;|X;). Again the result is triv-

rion of d-separation an algorithmically simple (polyno- g for & = j + 1. We follow the same inductive ar-

mial) test that detects independence in Bayesian networkaument. we assumé&IR(X;, X;4,|X;) and we want
. k)

[25]. However, the proof qf soundness of d-sepa_ra'Fion de'EIR(Xi, (X141, X;4141)|X;). However we cannot use
pends on theemi-graphoicproperties of stochastic inde- - conraction here [11], so we must take a different route.
pendence [12, 16, 25, 28]. The problem here is that onergke an arbitrary functionf(X;4;, X;441); to simplify

“4We thank a reviewer for bringing this property of the aldurit to notation, we use for j + [. By selecting the following
our attention. distribution, clearly independent &f; and.X;:
5A node X; is abarren nodef it is not used to define event§ and
E, and either it has no descendants, or its descendants arbalen .
nodes. The moral graph of a Bayesian network is obtained iyesxing PXp1] X1, .., Xy) = argmin E[f (X1, X0)| X0 ],
all parents of nodes and then removing the direction of ajeed (6)




we have: about their separation properties and other simplification
that are routinely applied with stochastic independente. |

E[f(Xr, Xr41)| X5, Xj] this paper we have contributed with techniques and results
=min E[E[f(X,, X,+1)|X:, X;, X, ]| X5, X] that increase the current understanding about epistemic ir
= min E[E[f(X,, X,41)| X,] | X4, X;] relevance and independence.
= E[E[f(X,, Xr+1)|X,] | X4, X;]. First, we have presented multilinear programming meth-

ods that handle general judgements about events, and

judgements about random variables expressed through
By assumption EIR(X;, X,|X;), thus the credal networks. These techniques open the possibility
previous iterated lower expectation is equal that approximation methods from multilinear program-
to E[E[f(X;, X, 1) |X,] X5, and then ming can be profitably adapted, something that cannot be
E[f(X,, X,41)|Xi, X;] = EE[f(Xr, Xo1:1) X, 1X]. easily done with existing methods. Also, algorithms in-
Note thatE[f (X, X,+1)|X;, X;] cannot be smaller than herit convergence guarantees from multilinear program-

this last iterated lower expectation [33]. Likewise, ming — it is an open question whether such guarantees
can be given for Walley’s algorithm and its generaliza-

E[f(X;, Xr41)|X;] = min E[E[f(X,, X,+1)|X,] | X;] tions. Moreover, our algorithms are more efficient than
= EIE[f(X,, X,11)|X,]1X;] exigting methods, particularly for mgnipulaﬁqn of random
= E[f(Xy, Xo1)| Xi, X;]. varlablesz because they_do not require .eXp|ICIt constoacti

= ’ T of extensions. The multilinear formulation even opens the

This argument requires that minimizing distributions be POSSibility of mixing judgements of epistemic and strong
actually available in the epistemic extension. To seeindependence in the same algorithmic framework. Cer-
that this is the case, consider the auxiliary extensiont@inly we leave many avenues for further work; for ex-
generated by multiplying every distribution in the epis- amplle, a precise ghgracterlzatlon of. computatlonall com-
temic extensionk (X1, ..., X,) by the distribution in plexity for epistemic irrelevance and independence i stil
Expression (6). The resulting extension does satisfie€P€N-

the Markov condition forX, ..., X, and also forX,,1  Second, we have shown that usual separation properties
(because Expression (6) defines the conditionakpf:  employed in Bayesian networks hold for Markov chains.
given X,..., X,, and this distribution is independent Many important properties of stochastic independence
of Xy,...,X;_1). Thus the auxiliary extension belongs have no known analogues for epistemic irrelevance and in-

to the epistemic extension, and it contains an approprigependence; an interesting avenue for further is exactly to
ate minimizing probability distribution. Ag(X,, X,4+1) find such analogues.

is arbitrary, we obtaitBIR(X;, (X;yi+1,X;+1)|X;) and

thenFEIR(X;, X ; X ;) by direct decompositiori]
(Xis X[ X5) by P Acknowledgements

The theorem only considered extensions based on epis-

temic independence, and focused on a relatively simpleaje thank Peter Walley for sharing with us the algorithm in
independence relation on chains. It is possible that therigure 4. This work has received generous support from
proof can be extended to much more complex networksHp Brazil R&D. The work has also been supported by

and more general relations without much change; hOW-CNPq (through grant 3000183/98-4) and FAPESP.
ever it seems that a substantially new approach would be

needed to prove full d-separation in case it is valid in the
present context. It is possible that, even though full d-

separation is not valid, some simpler (possibly asymmet- . ) . - .
ric) separation property is valfi. The iterative procedure described in Figure 4 produces in-

ferences for an ever®® conditional on another eveif,
. under judgements of epistemic irrelevance. The method
6 Conclusion has been conceived by Walley (personal communication);
we present a very brief summary so as to compare it to
Epistemic irrelevance and independence arguably offer theyur multilinear programming approach. The idea of Wal-
“right” way to define a behavioral notion of independence |ey’s algorithm is to check, at each iteration, whethetirre
for credal sets. However, these concepts are difficult toevance assessments are satisfied by a pool of constraints;
manipulate computationally. On the one hand, judgementsf not, then the smallest change in assessments that can
of epistemic irrelevance and independence lead to veryead to satisfaction of irrelevance judgements is computed
complex joint credal sets; on the other hand, little is known and the current constraints are modified accordingly. Each
6We thank a reviewer for bringing this possibility to our atien, as  iteration modifies at least one of current assessments (or
well as for pointing out the relevant references [23] and.[30 stops). The algorithm gradually converges to a set of con-

A Walley’s iterative algorithm




straints that represent the whole natural extension. Obvi- [6] F. G. Cozman. Calculation of posterior bounds given
ous changes to Walley’s algorithm can account for assess-
ments containing random variables and for judgements of

conditional irrelevance among events.

Itis also possible to conceive an extension of the algorithm [7]
so as to handle judgements of irrelevance among random

variables, even though its practical feasibility is unclea

at the moment. So as to facilitate comparison with our [8]
methods, we outline one such extension here. Consider

judgements of the fornfbIR(X;, Y;|C). We start by col-

lecting all assessments (other than judgements of indepen-

dence). For each judgemeifR(X;,Y;|C), we obtain an
explicit description o' (Y;|C) and of K (Y;|X,; = z,C);

9]

this has the same purpose of step (2.2) in Walley’s algo-
rithm. To generate an explicit description &f(Y;|C)

or K(Y;|X; = z,C), we must resort either to Fourier-
Motzkin elimination or to an enumeration procedure [19]. [10]
If K(Y;|C) and K(Y;|X; = z,C) have the same con-
vex hull for every value ofX;, for everyj, then we stop
(as in the “first half” of step (2.3)). Suppose that, for
a givenj, K(Y;|C) and K (Y;|X; = z,C) have differ-

ent convex hulls. Now we simply enforce that each one[ll] F. G. Cozman and P. Walley. Graphoid properties

of these sets must satisfy all constraints in their current
intersection (take the union of constraints defining these
sets) — this is similar to the “second half” of step (2.3)
in Walley’s algorithm. The procedure just outlined grad-

ually constructs the whole natural extension. A computer

implementation would have to struggle with several diffi- [12]
culties: first, the explicit description of sef§(Y;|C) and
K(Y;|X,; = z,C) may require an exponential growth in
the number of constraints; second, it is not easy to de
tect when sets have identical convex hulls; finally, it is not

clear that this extended algorithm is always convergent, le

alone finitely convergent.
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