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Abstract

A granular based semantics for fuzzy measures is in-
troduced in which the measure of a set of proposi-
tions approximates the probability of the disjunction
of these propositions. This approximation is derived
from known probabilities across a granular partition
of the set of possible worlds. This interpretation is
then extended to allow for the case where there is
uncertainty regarding the meanings of propositions.
Such a semantics is motivated by, and provides some
justification for, the use of fuzzy measures to quan-
tify the uncertainty associated with climate emissions
scenarios. The use of socio-economic scenarios in cli-
mate models is discussed in the context of a possible
worlds model and an example is given of the use of
fuzzy measures across scenarios to aggregate global
mean temperature predictions.

Keywords. Fuzzy measures, operational semantics,
uncertain models, emission scenarios

1 Introduction

The notion of fuzzy measure as proposed by Sugeno
[12] has been the subject of much theoretical investi-
gation (see [13] for an overview) and has been applied
to range of problems in artificial intelligence, with spe-
cial focus on the problem of aggregation. Despite this
interest it remains somewhat unclear how fuzzy mea-
sures should be interpreted within an operational set-
ting. This exasperates the practical difficulties of elic-
iting numerical values from experts (see [2] for a dis-
cussion) and makes any uncertainty modelling based
on fuzzy measures difficult to to analyse. Formally, a
fuzzy measure is defined as a (possibly) non-additive
measure satisfying monotonicity with respect to the
subsethood relation as follows:

Definition 1 Fuzzy Measure [12]
Let X be a finite universe then a function µ : 2X →
[0, 1] is a fuzzy measure if it satisfies the following

axioms:

• µ (X) = 1, µ (∅) = 0

• If S ⊆ T ⊆ X then µ (S) ≤ µ (T )

This is a rather general definition and includes a
wide range of measures such as, probability mea-
sures, Dempster-Shafer belief and Plausibility mea-
sures, and Possibility measures. The interpretations
of fuzzy measures that have been proposed within the
literature fall mainly into two categories. One view
taken in [13] and [5] is that the universe X consists
of certain indicators of the quality of an individual or
object and for S ⊆ X, µ (S) is a measure of the collec-
tive importance of the set of indicators S. The second
view (as discussed in [5]) proposes that fuzzy measures
quantify uncertainty in the same way as probability
or Dempster-Shafer measures. It is this second view
with which we shall be concerned in this paper. A
possible third interpretation of fuzzy measures is pro-
vided by [11] in which the power set of the universe
X corresponds to the set of possible outcomes of an
experiment and µ (S) is regarded as the fraction of
the total available resources consumed if the result of
the experiment is S. However, while interesting this
semantics would seem more closely related to the im-
portance, rather than the uncertainty interpretation
of fuzzy measures.

In the following we outline a semantics for fuzzy mea-
sures that utilizes a notion of information granularity
similar to that proposed by Pawlak [10] as the ba-
sis of rough set theory. In this interpretation the set
of possible worlds Ω is partitioned into granules cor-
responding to minimal subsets for which probability
values can be either estimated or elicited. We then
suggest using the probabilities of the granules to pro-
vide an estimate for the probability of other subsets
of Ω as defined by declarative propositions about the
world. This estimate is then shown to be a fuzzy mea-
sure.



In our case the motivation for investigating semantics
for fuzzy measures is drawn from the specific prob-
lem of identifying an uncertainty measure to evaluate
emissions scenarios in climate change models. Models
of future climate change require, amongst other in-
puts, time series of greenhouse gas emissions. These
are derived from scenarios based on linguistic narra-
tives of potential socio-economic futures [8]. As such
they are far from precise constructs.

The analysis of uncertainty in climate research has
raised fundamental questions about the most appro-
priate way to represent uncertainties and communi-
cate them to decision-makers. Of central importance
is the debate concerning whether climate change pre-
dictions should be expressed in probabilistic terms.
On the one hand it is argued that probabilities are
essential to make rational decisions under conditions
of uncertainty. On the other hand, certain aspects of
climate uncertainty, in particular emission scenarios
because of their imprecise and overlapping nature, do
not lend themselves to quantification by a purely ad-
ditive measure of uncertainty. In the sequel we inves-
tigate the use of fuzzy measures to capture the uncer-
tainty associated with emission scenarios and consider
if such a model can be justified within the proposed
granular semantics.

2 Semantics for Fuzzy Measures

Let G = {A1, . . . , An} and D = {B1, . . . , Bm} be two
distinct sets of propositions about the world. Also let
Ω denote the set of all conceivable world descriptions.
We then define

Ai = {w ∈ Ω : w |= Ai} for i = 1, . . . , n

Bi = {w ∈ Ω : w |= Bi} for i = 1, . . . ,m

Hence, Ai and Bj corresponds to the models of propo-
sitions Ai and Bj respectively for i = 1, . . . , n and
j = 1, . . . ,m. It is also assumed that ∀i Ai 6= ∅,
∀i, j : i 6= j Ai ∩ Aj = ∅ and that

⋃n
i=1 Ai = Ω. In

other words, {Ai : i = 1, . . . , n} is a partition of Ω.
Intuitively this means that G is a complete descrip-
tion of reality based on only limited granularity. For
example, if x : Ω → R is a variable representing some
numerical measurement of a world w then a possible
description of granularity 2 is G = {A1, A2} where:

A1 = x > δ and A2 = x ≤ δ for δ ∈ R

In this case

A1 = {w ∈ Ω : x (w) > δ} and

A2 = {w ∈ Ω : x (w) ≤ δ}

On the other hand, D corresponds to a set of proposi-
tions about the world in which we are interested, but
which are not necessarily disjoint (i.e. Bi ∩ Bj 6= ∅).

Now suppose that we do not have enough informa-
tion to specify a probability distribution on the com-
plete set of possible worlds Ω but we are able to
elicit probability values of the granular propositions
Ai : i = 1, . . . , n. Let P be a probability measure on
2G with corresponding probability distribution p on
G. Can we use this probabilistic information regard-
ing G to estimate belief values for propositions in D?
We propose a measure µ on 2D as follows:

Definition 2 Initially we define

∀S ⊆ D, let W (S) =
⋃

Bj∈S

Bj

this being the set of worlds consistent with a least one
of the statements in S being true. Then ∀S ⊆ D,∀α ∈
[0, 1] let

∀S ⊆ D, µα (S) = P (Sα) =
∑

Ai∈Sα

p (Ai)

where Sα =

{

Ai :
|Ai ∩W (S)|

|Ai|
≥ α

}

Intuitively then according to Definition 2 µα (S) pro-
vides an approximation to the probability of com-
pound proposition

∨

Bi∈S Bi based on the probabil-
ity measure P defined on the granular propositions
in G. Specifically, this estimate is obtained by first
identifying those granular propositions Ai for which
their associated models Ai overlaps W (S), the model
of

∨

Bi∈S Bi, to a degree greater than or equal to α.
µα (S) is then evaluated as the sum of the probabili-
ties of these highly overlapping granular propositions.
For example, in Figure 1 the grid cells correspond to
Ai : i = 1, . . . , n and the circles to B1, B2, B3. In this
case, the dark grey cells are those Ai which completely
overlap with (i.e are contained within) B1 ∪ B2 ∪ B3

and the light grey cells are those Ai that overlap with
this set to some degree α > 0. The parameter α can
be interpreted as quantifying the level of caution em-
ployed when estimating probabilities. Effectively the
higher the value of α the more likely it is that µα (S)
is an underestimate of the probability of

∨

Bi∈S Bi

whereas the lower the value of α the more likely it is
that µα (S) is an overestimate of this probability.

The following theorem shows that provided Bi : i =
1, . . . ,m covers the set of possible worlds Ω then µα

is a fuzzy measure.



B1

B2
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Figure 1: Granules, Ai consistent with B1 ∪ B2 ∪ B3.
The dark grey cells correspond to those Ai : ∀α Ai ∈
Sα. The light grey cells correspond to those Ai :
∃α > 0, Ai ∈ Sα

Theorem 3

∀α ∈ (0, 1] µα is a fuzzy measure on 2Dprovided
m
⋃

i=1

Bi = Ω.

Proof

µα (D) = P (Dα) and

Dα = {Ai :
|Ai ∩W (D)|

|Ai|
≥ α} =

{Ai :
|Ai ∩ Ω|

|Ai|
≥ α} = G

therefore µα (D) = P (G) = 1

Now

∅α = {Ai :
|Ai ∩ ∅|

|Ai|
≥ α} = ∅ since α > 0

and therefore µα (∅) = P (∅) = 0

∀S1, S2 ⊆ D, (S1 ∪ S2)α =

{Ai :
|Ai ∩W (S1 ∪ S2)|

|Ai|
≥ α}

Now

∀Ai ∈ G, |Ai ∩W (S1 ∪ S2)|

≥ max (|Ai ∩W (S1)| , |Ai ∩W (S2)|)

and therefore

(S1 ∪ S2)α ⊇ (S1)α and (S1 ∪ S2)α ⊇ (S2)α

so that

P ((S1 ∪ S2)α) ≥ max (P ((S1)α) , P ((S2)α))

which implies that

µα (S1 ∪ S2) ≥ max (µα (S1) , µα (S2)) ¤

We can define upper and lower bounds on µα as fol-
lows:

Upper and Lower Measures

Note that, trivially, ∀ǫ ∈ (0, 1]

⋃

α≥ǫ

Sα = Sǫ

Lower Bound:

∀S ⊆ D, S = S1 = {Ai : Ai ⊆ W (S)}

µ (S) = P (S)

Upper Bound:

∀S ⊆ D, S =
⋃

α>0

Sα = {Ai : Ai ∩W (S) 6= ∅}

µ (S) = P
(

S
)

Trivially

∀S ⊆ D, ∀α ∈ (0, 1] , µ (S) ≤ µα (S) ≤ µ (S)

Notice that there is a clear link here to Pawlak’s the-
ory of rough sets [10] in that the pair

(

S, S
)

is a rough
set approximation to W (S). There is also a relation-
ship with Ziarko’s variable precision rough set model
[15] in that Sα can also be expressed in terms of the
generalised inclusion relation, proposed in [15], which
allows for a margin of error ǫ in judgements about
subsethood, so that:

X
ǫ

⊆ Y iff
|X ∩ Y |

|X|
≥ 1 − ǫ

In this notation

Sα =

{

Ai : Ai

1−α

⊆ W (S)

}

The following theorem shows that the upper measure
µ can never be super-additive.

Theorem 4

∀S1, S2 ⊆ D, µ (S1 ∪ S2) ≤ µ (S1) + µ (S2)



Proof

{Ai : Ai ∩ (W (S1 ∪ S2)) 6= ∅} =

{Ai : Ai ∩ (W (S1)) 6= ∅}

∪{Ai : Ai ∩ (W (S2)) 6= ∅}

⇒ S1 ∪ S2 = S1 ∪ S2

⇒ P
(

S1 ∪ S2

)

≤ P
(

S1

)

+ P
(

S2

)

¤

The following example illustrates both sub-additive
and super-additive behaviour from the fuzzy measure
µα as the parameter α varies within the range (0, 1].

Example 5 Let Ω = {w1, . . . , w10} and suppose G =
{A1, . . . , A5} and D = {B1, . . . , B4} are defined such
that:

A1 = {w1, w2}, A2 = {w3, w4, },

A3 = {w5}, A4 = {w6, w7, w8},

A5 = {w9, w10}

B1 = {w1, w2, w4, w6},B2 = {w1, w2, w3, w5, w9, w10},

B3 = {w7, w9, w10},B4 = {w8, w10}

Let

P (A1) = 0.1, P (A2) = 0.35, P (A3) = 0.05,

P (A4) = 0.4, P (A5) = 0.1

Let α = 0.5 then

{B3}0.5 = {A5} and {B4}0.5 = {A5}because

|A4 ∩ B3|

|A4|
=

|{w7}|

|{w6, w7, w8}|
=

1

3
<

1

2
and

|A5 ∩ B3|

|A5|
=

|{w9, w10}|

|{w9, w10}|
= 1 >

1

2
and

|A4 ∩ B4|

|A4|
=

|{w8}|

|{w6, w7, w8}|
=

1

3
<

1

2
and

|A5 ∩ B4|

|A5|
=

|{, w10}|

|{w9, w10}|
=

1

2
≥

1

2
and

|Ai ∩ B3|

|Ai|
=

|Ai ∩ B4|

|Ai|
= 0 for i = 1, . . . , 3

Therefore

µ0.5 ({B3}) = 0.1 and µ0.5 ({B4}) = 0.1

{B3, B4}0.5 = {A4, A5} because

|A4 ∩ (B3 ∪ B4)|

|A4|
=

|{w7, w8}|

|{w6, w7, w8}|
=

2

3
>

1

2

and
|A5 ∩ (B3 ∪ B5)|

|A5|
=

|{w9, w10}|

|{w9, w10}|
= 1 >

1

2

Therefore, µ0.5 ({B3, B4}) = 0.1 + 0.4 = 0.5 >

µ0.5 ({B3}) + µ0.5 ({B4}) = 0.2

Also

{B3} = {A4, A5} and {B4} = {A4, A5}

therefore

µ ({B3}) = µ ({B4}) = p (A4) + p (A5) = 0.5

furthermore

{B3, B4} = {A4, A5} ⇒ µ ({B3, B4}) = 0.5

< µ ({B3}) + µ ({B4})

Finally

{B3} = {A5} and {B4} = ∅ therefore

µ ({B3}) = 0.1 and µ ({B4}) = 0

also {B3, B4} = {A5} therefore

µ ({B3, B4}) = 0.1 = µ ({B3}) + µ ({B4})

Figure 2 shows how the additivity of µα ({B3, B4})
varies with α. For high values of α this measure is
additive, there is an intermediate range of α values
for which it is super-additive and for low values we
have sub-additivity.
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0.6

0.8

1

 

0.2 0.4 0.6 0.8 1 

µα ({B3}) + µα ({B4})

Sub-additive

Super-additive

Additive

µα ({B3, B4})

αµ µ

Figure 2: Regions of additivity, sub-additivity and
super-additivity of µα as α varies. The black
line represents the value of µα ({B3, B4}) while the
dashed line represents the associated additive value
µα ({B3}) + µα ({B4}).

3 Fuzzy Measures of Fuzzy

Propositions

For many problems the meanings of the propositions
under consideration (in this case D) may not be pre-
cisely defined. For socio-economic scenarios, in partic-
ular, there is no clear consensus as to their exact def-
initions. Indeed, the fact that they are largely based
on linguistic descriptions would suggest a certain vari-
ability of definition across a range of experts arising
from the natural variability in the use of language.



In this section we propose an extension to the gran-
ularity semantics for fuzzy measures that incorpo-
rates a range of opinions regarding the models for the
propositions in D. Specifically, we define a notion of
uncertain models, as derived from a finite set of ex-
perts V , in terms of random sets into the power set
of Ω.

Definition 6 Uncertain Models
Let V be a finite set of experts then we define Bi :

V → 2Ω for i = 1, . . . ,m to be a sequence of random
sets into 2Ω such that: ∀v ∈ V,

⋃m

i=1 Bi (v) = Ω

Now suppose we have a measurement variable x : Ω →
R quantifying a specific property of a given state of
the world. For example, in climate modelling x might
correspond to the fossil CO2 emmissions for a par-
ticular year. In the case where our knowledge of the
state of the world is restricted to some subset of Ω
then this naturally defines an interval of values for x

as follows:

Definition 7 Let x : Ω → R then define

x : 2Ω → R such that ∀T ⊆ Ω,

x (T ) = max {w ∈ T : x (w)}

and

x : 2Ω → R such that ∀T ⊆ Ω,

x (T ) = min {w ∈ T : x (w)}

Definition 7 assumes a precise constraint on the state
of the world of the form w ∈ T for T ⊆ Ω. How-
ever, in the case that our knowledge corresponds to a
proposition Bi with an uncertain model as in defini-
tion 6, then x can only be known relative to a mass
assignment on possible intervals as follows: Let ρ be
a probability distribution on V then we can define a
mass assignment for random set Bi according to:

∀T ⊆ Ω, mi (T ) = ρ ({v ∈ V : Bi (v) = T})

This interpretation of mass assignments is an exten-
sion of the voting model proposed by Gaines [4] and
subsequently developed by Baldwin [1].

Let

Ix = {[x (T ) , x (T )] : T ⊆ 2Ω}

Then we can define an associated mass assignment on
intervals of R containing x as follows:

∀I ∈ Ix, mx
i (I) =

∑

T⊆Ω:[x(T ),x(T )]=I

mi (T )

Now assuming that we interpret fuzzy membership
functions as single point coverage functions of ran-
dom sets [6] then from the above we can determine a

membership function for variable x in scenario Bi as
follows:

∀y ∈ R, πx
i (y) =

∑

I∈Ix:y∈I

mx
i (I)

Furthermore, in the case that Bi is a consonant
(nested) random set then we can derive mx

i directly
from πx

i according to the standard algorithm for pos-
sibility measures. (see Klir [9])

We now extend Definition 2 to the case where the
models for propositions in D are given by random
sets based on expert opinion.

Definition 8 Initially we define

∀S ⊆ D, ∀v ∈ V, let Wv (S) =
⋃

Bj∈S

Bj (v)

Then ∀S ⊆ D, ∀v ∈ V, ∀α ∈ (0, 1],

let Sα,v =

{

Ai :
|Ai ∩Wv (S)|

|Ai|
≥ α

}

From this we define

∀S ⊆ D, µα (S) =
∑

v∈V

ρ (v)µα,v (S)

where ∀v ∈ V, let µα,v (S) = P (Sα,v)

Theorem 9

∀α ∈ (0, 1], µα, as given in Definition 8,

is a fuzzy measure on 2Dprovided that

∀v ∈ V,

m
⋃

j=1

Bj (v) = Ω

Proof By Theorem 3 it follows that ∀α ∈ (0, 1] and
∀v ∈ V , µα,v is a fuzzy measure. Therefore, since µα

is a linear combination of such measures with positive
coefficients that sum to 1 it follows that µα is also a
fuzzy measure.

Example 10 Let Ω = {w1, . . . w10},
V = {v1, v2, v3, v4, v5} and D = {B1, . . . B4} are de-
fined as given in the table in Figure 3.

Let x (wi) = i2 : i = 1, . . . , 10 and let

ρ (v1) = 0.1, ρ (v2) = 0.1,

ρ (v3) = 0.4, ρ (v4) = 0.25, ρ (v5) = 0.15

In this case m1 ({w1, w2, w4, w6}) = 0.1,

m1 ({w1, w2, w4}) = 0.1,m1 ({w1, w2}) = 0.65

m1 ({w1}) = 0.15 from which we can evaluate

mx
1 ([1, 36]) = 0.1,mx

1 ([1, 16]) ,

mx
1 ([1, 4]) = 0.65,mx

1 ([1, 1]) = 0.15



expert B1 (v) B2 (v) B3 (v) B4 (v)
v1 {w1, w2, w4, w6} {w3, w9} {w7, w5, w8, w9, w10} {w10}
v2 {w1, w2, w4} {w3, w5, w6, w9} {w7, w9} {w8, w10}
v3 {w1, w2} {w3, w4, w5, w6, w9} {w7} {w8, w9, w10}
v4 {w1, w2} {w2, w3, w4, w5, w6, w9} {w7} {w8, w10}
v5 {w1} {w1, w2, w3, w4, w5, w6, w9} {w7, w9} {w8, w10}

Figure 3: Table showing random set definitions of B1, . . . ,B4

The resulting possibility distribution is then given by
(see Figure 4):

πx
1 =























1 : x = 1
0.85 : x ∈ (1, 4]
0.2 : x ∈ (4, 16]
0.1 : x ∈ (16, 36]

0 : x > 36

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40
x

Figure 4: Possibility distribution πx
1 on x

4 Climate Emissions Scenarios

The IPCC special report on emissions scenarios
(SRES) [8] identifies a two dimension space within
which socio-economic scenarios can be located (see
Figure 5) and the UK government Foresight Futures
document [3] adopts a similar conceptual framework.
The x-axis in Figure 5 corresponds to social values
ranging from the individualistic to those associated
with a strong community. The y-axis relates to sys-
tems of government and their decision making pro-
cesses. Here the range is from ‘autonomy’ where
power remains largely at the national level to ‘inter-
dependent’ where power is shared across a range of
institutions and between national governments (E.g.
as in the EU). Conventional development is seen as
lying mostly within the quadrant where the social sys-
tem emphasises individual values but where we have

increasing economic and governmental dependence.
Linguistic descriptions of these scenarios are used to
derive assumptions upon which quantified modelling
of, for example, the global economy and greenhouse
gas emissions, is based.

World
Markets

Global
Sustainability

National
Enterprise

Local
Stewardship

Conventional

development

Individual Community

Interdependence

Autonomy

Figure 5: A conceptual space for climate scenarios [3].
The x-axis corresponds to social values and the y-axis
to systems of governance.

The points in the space identified in Figure 5 can
conceptually be thought of as possible states of the
world and scenarios as potentially overlapping regions
identified by a set of linguistic descriptions D. Sim-
ilarly, the granular propositions G would identify a
coarser partition of the space at which probability
values could realistically be elicited. In practice, of
course, the space D occupied by scenarios is likely
to be highly multi-dimensional, taking into account
a wide range of social, economic and political factors.
Indeed the SRES states that this is indeed the case [8].
None the less, the idea that scenarios identify a set of
possible worlds within such a space seems intuitively
appealing and may provide a conceptual framework
to aid in the elicitation of measures of uncertainty.

Emissions scenarios are typically clustered into fam-
ilies where the members of each family are based on
roughly equivalent socio-economic descriptions. In



this paper we focus on four families of scenarios: A1,
A2, B1 and B2. Summary descriptions of these fami-
lies as given in [8] are as follows:

• The A1 scenario family describe a future world
of very rapid economic growth, global population
that peaks in mid-century and declines there-
after, and the rapid introduction of new and more
efficient technologies. Major underlying themes
are convergence among regions, capacity build-
ing, and increased cultural and social interac-
tions, with a substantial reduction in regional dif-
ferences in per capita income.

• The A2 scenario family describe a very het-
erogeneous world. The underlying theme is self-
reliance and preservation of local identities. Fer-
tility patterns across regions coverage very slowly,
which results in continuously increasing global
population. Economic development is primar-
ily regionally oriented and per-capita economic
growth and technological change are more frag-
mented and slower than under other scenarios.

• The B1 scenario family describe a convergent
world with the same global population that peaks
in mid-century and declines thereafter, as in the
A1 family, but with rapid changes in economic
structures toward a service and information econ-
omy, with reductions in material intensity, and
the introduction of clean and resource-efficient
technologies. The emphasis is on global solutions
to economic, social and environmental sustain-
ability, including improved equity, but without
additional climate initiatives.

• The B2 scenario family describe a world in
which the emphasis is on local solutions to eco-
nomic, social, and environmental sustainability.
It is a world with continuously increasing global
population at a rate lower than A2, intermediate
levels of economic development, and a less rapid
and more diverse technological change than un-
der the B1 and A1 scenarios. While the scenario
is also oriented toward environmental protection
and social equity, it focuses on local and regional
levels.

The linguistic nature of the scenario descriptions
would suggest that underlying models are unlikely to
be precisely defined and hence, may be more realisti-
cally described in terms of the uncertain models given
in Definition 6. Also, the variation amongst related
scenarios [8] provides further justification for thinking
of scenarios as fuzzy constructs. Within each family
there tends to be significant variation in the range of

CO2 emissions trajectories. It is not, however, appro-
priate to apply any statistical interpretation to the
frequency or spread of trajectories within a family.
These are not samples from a random process. In-
stead they are generated by different models based on
different assumptions that correspond, to a greater or
lesser extent, to the linguistic definition of the sce-
nario. Whilst resisting any frequentist interpretation
of the published family of emissions time series we can
nonetheless suppose that there are regions within the
bounds of the family of time series that are thought of
as being more representative of the scenario, so should
have greater membership in the scenario. A specific
‘marker scenario’ is taken as being representative of
the family so should occupy the region of maximum
fuzzy membership in the scenario.

Figure 6 shows a fuzzy set representing the A1 family
of scenarios [8]. The fuzzy set was generated by taking
the outer envelope of the published family of scenarios
to represent the extreme bounds on the fuzzy set . We
have then generated a trapezoidal fuzzy set based on
these outer bounds and an interval around the maker
scenario. The fuzzy set need not be trapezoidal and
in fact sensitivity analysis indicates that any member-
ship function consistent with the general form of the
scenario family will generate similar results.

In the current study we have used the spatially aggre-
gated climate model MAGICC [14]. Fuzzy emissions
scenarios were constructed using the method outlined
above for the A1, A2, B1 and B2 families of scenar-
ios (see [8]) and propagated through MAGICC using
default values for the model parameters according to
a standard α-cut method as follows: A fuzzy CO2

emissions scenario (as shown in Figure 6) defines a
possibility distribution πt for each year t. The corre-
sponding fuzzy projection of global mean temperature
(GMT) change at time t′ is then taken to have possi-
bility distribution πt′ such that:

∀α ∈ [0, 1] πt′

α =
{

yt′ : πt′ (yt′) ≥ α
}

=
[

yt′ , yt′
]

where yt′ (yt′) is the lower (upper) bound on GMT
change at t′ obtained from MAGICC as the input CO2

emissions at t (xt) is varied across the range πt
α. The

possibility distribution is then recovered from the α-
cuts in the normal manner by taking:

πt′ (yt′) = sup
{

α : yt′ ∈ πt′

α

}

Although, in practice, the α-cuts were only evaluated
at 6 levels, as shown in Figure 7, and the remain-
ing α-cuts estimated by interpolation. The calcula-
tion of upper and lower bounds on GMT change for
each α-cut was simplified by taking advantage of the
monotonicity of MAGICC with respect to fossil CO2



Figure 6: Fuzzy set representing CO2 emissions for the A1 family of scenarios.

emissions. More details concerning the propagation
of fuzzy scenarios through MAGICC can be found in
[7].
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Figure 7: α-cuts of a fuzzy set on CO2 emissions

The resulting fuzzy global mean temperature projec-
tions are shown in Figure 8 for the year 2100.

Figure 8: Fuzzy global mean temperature projections
for 2100

To combine the different fuzzy projections it is pro-
posed to define a fuzzy measure on the power set of
scenarios D = {A1, A2, B1, B2} and then to aggre-
gate the different membership values resulting from
the four scenarios using the Choquet integral. The
current view that emerged during interviews with
economists from the Tyndall Centre was that the like-

lihood of the 4 scenarios follows the ordering µ (A1) >

µ (B1) > µ (A2) > µ (B2). Figure 9 shows fuzzy
measures in the same proportions, preserving this or-
dering, whilst assuming different degrees of synergy
or redundancy as represented by sub-additive, addi-
tive and super-additive measures. The resulting ag-
gregated fuzzy sets on global mean temperature for
2100 based on these measures and combined using
the Choquet integral are shown in Figure 10.

Subset of
scenarios Additive

Sub-
additive

Super-
additive

{A1} 0.5 0.7 0.3
{A2} 0.2 0.28 0.12
{B1} 0.25 0.35 0.15
{B2} 0.05 0.07 0.03

{A1, A2} 0.7 0.74 0.63
{A1, B1} 0.75 0.79 0.68
{A1, B2} 0.55 0.58 0.5
{A2, B1} 0.45 0.47 0.41
{A2, B2} 0.25 0.26 0.23
{B1, B2} 0.3 0.32 0.27

{A1, A2, B1} 0.95 0.93 0.91
{A1, A2, B2} 0.75 0.74 0.72
{A1, B1, B2} 0.8 0.78 0.77
{A2, B1, B2} 0.5 0.49 0.48

{A1, A2,

B1, B2} 1 1 1

Figure 9: Table showing fuzzy measures applied to sce-

narios

5 Summary and Conclusions

A granular interpretation of fuzzy measures has been
proposed whereby the fuzzy measure of a set of propo-
sitions represents an approximation to the probability
of the disjunction of these propositions. This approx-



Figure 10: Aggregated fuzzy global mean temperature
projections for 2100

imation is based on known probability values across a
relatively coarse partition of the set of possible worlds.
In the case that the meaning of propositions are un-
certain then this semantics can be extended to incor-
porate random set based models.

The granular semantics outlined in this volume was
motivated by an investigation into applying fuzzy
measures to quantify the uncertainty associated with
climate emission scenarios. These scenarios can be
viewed as identifying sets of possible worlds where
each world corresponds to a complex socio-economic
state. Scenarios are based on linguistic storylines
and hence are naturally imprecise constructs. In
our study fuzzy measures were applied in conjunc-
tion with the Choquet integral in order to aggregate
fuzzy global mean temperature predictions resulting
from the propagation of fuzzy CO2 levels through the
climate model MAGICC.

The delicate problem of elicitation remains - the work
described above was based on typical values rather
than a formal elicitation exercise (although informal
interviews were conducted). However, we have argued
that the above granular semantics for fuzzy measures
defined across the possible states of the world will pro-
vide a convenient framework for the elicitation pro-
cess.

6 Acknowledgements

The research described in this paper was funded by
the Tyndall Centre for Climate Change Research as
part of project T2.13.

References

[1] J.F. Baldwin, T.P. Martin, B.W. Pilsworth,
(1995), Fril-Fuzzy and Evidential Reasoning in
A.I., Wiley, New York

[2] R.M. Cooke, (1991), Experts in Uncertainty:
Opinion and Subjective Probability in Science, Ox-
ford University Press

[3] Foresight, (2002), Foresight Futures 2020: Scenar-
ios and User Guidance,
http://www.foresight.gov.uk

[4] B.R. Gaines, (1978), ‘Fuzzy and Probability Un-
certainty Logics’, Journal of Information and Con-
trol, Vol. 38, pp154-169

[5] M. Grabisch, H.T. Nguyen, E.A. Walker, (1995),
Fundamentals of uncertainty calculi with applica-
tions to fuzzy inference, Kluwer academic Press

[6] I.R. Goodman, H.T. Nguyen,(1985), Uncertainty
Models for Knowledge Based Systems, North Hol-
land

[7] J.W. Hall, G. Fu, J. Lawry, (2005), ‘Imprecise
Probabilities of Climate Change: Aggregation of
Fuzzy Scenarios and Model Uncertainties’, Climatic
Change, in review

[8] IPCC, (2000), Special Report on Emissions
Scenarios, Intergovernmental Panel on Climate
Change

[9] G.J. Klir, B. Yuan, (1995),Fuzzy Sets and Fuzzy
Logic, Prentice Hall

[10] Z. Pawlak, (1991), Rough Sets - Theoretical As-
pects of Reasoning about Data, Kluwer Academic
Publishers

[11] F. Reche, A. Salmeron, (2000), ‘Operational Ap-
proach to General Fuzzy Measures’, International
Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, Vol. 8, No. 3, pp369-382

[12] M. Sugeno, (1974), Theory of Fuzzy Integrals and
its Applications, PhD Thesis, Tokyo Institute of
Technology

[13] Z. Wang, G. Klir, (1992), Fuzzy Measure Theory,
Plenum Press

[14] T.M.L Wigley, S.C.B Raper, (2001), ‘Interpreta-
tion of High Projections for Global Mean Warm-
ing’, Science, Vol. 293, pp451-454

[15] W. Ziarko, (1993), ‘Variable Precision Rough Set
Model’, Journal of Computer and System Sciences,
Vol. 46, pp39-59


