Likelihood-Based Statistical Decisions

Marco Cattaneo Seminar for Statistics ETH Zürich, Switzerland

July 23, 2005

Likelihood Function

set of statistical models $\{P_{\theta} : \theta \in \Theta\}$ observation A

 \rightsquigarrow likelihood function $lik: \theta \mapsto P_{\theta}(A)$

Likelihood Function

set of statistical models $\{P_{\theta} : \theta \in \Theta\}$ observation A

 \rightsquigarrow likelihood function $lik: \theta \mapsto P_{\theta}(A)$

The likelihood function lik measures the *relative plausibility of the models* P_{θ} , on the basis of the observation A alone.

The likelihood function lik is *not* calibrated: only ratios $lik(\theta_1)/lik(\theta_2)$ are well determined.

Likelihood Function

set of statistical models $\{P_{\theta} : \theta \in \Theta\}$ observation A

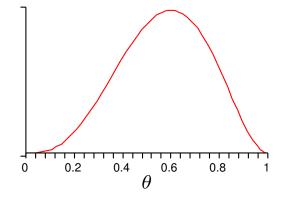
 \rightsquigarrow likelihood function $lik: \theta \mapsto P_{\theta}(A)$

The likelihood function *lik* measures the *relative plausibility of the models* P_{θ} , on the basis of the observation A alone.

The likelihood function lik is not calibrated: only ratios $lik(\theta_1)/lik(\theta_2)$ are well determined.

Example.

 $\begin{aligned} X &\sim Binomial\,(n,\theta) \\ n &= 5, \ \theta \in \Theta = [0,1] \\ x &= 3 \ \Rightarrow \ lik(\theta) \propto \theta^3 \, (1-\theta)^2 \end{aligned}$



Statistical Decision Problem

set of statistical models $\{P_{\theta} : \theta \in \Theta\}$ set of possible decisions \mathcal{D} loss function $L : \Theta \times \mathcal{D} \to [0, \infty)$

 $L(\theta, d)$ is the loss we would incur, according to the model P_{θ} , by making the decision d.

Statistical Decision Problem

set of statistical models $\{P_{\theta} : \theta \in \Theta\}$ set of possible decisions \mathcal{D} loss function $L : \Theta \times \mathcal{D} \to [0, \infty)$

 $L(\theta, d)$ is the loss we would incur, according to the model P_{θ} , by making the decision d.

observation $A \ \leadsto \$ likelihood function lik on Θ

MPL criterion: minimize $\sup_{\theta} lik(\theta) L(\theta, d)$

Statistical Decision Problem

set of statistical models $\{P_{\theta} : \theta \in \Theta\}$ set of possible decisions \mathcal{D} loss function $L : \Theta \times \mathcal{D} \to [0, \infty)$

 $L(\theta, d)$ is the loss we would incur, according to the model P_{θ} , by making the decision d.

observation $A \ \leadsto \$ likelihood function lik on Θ

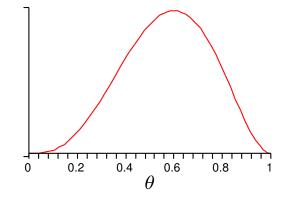
MPL criterion: minimize $\sup_{\theta} lik(\theta) L(\theta, d)$

minimax criterion: minimize $\sup_{\theta} L(\theta, d)$ MPL = minimax if *lik* is constant (i.e., *complete ignorance* about Θ) MPL: Minimax Plausibility-weighted Loss

$$lik(\theta) \propto \theta^3 (1-\theta)^2$$

$$L(\theta, d) = |d - \theta^2|$$

$$d_{ML} = 0.36, \quad d_{MPL} \approx 0.385, \quad d_{BU} \approx 0.335$$



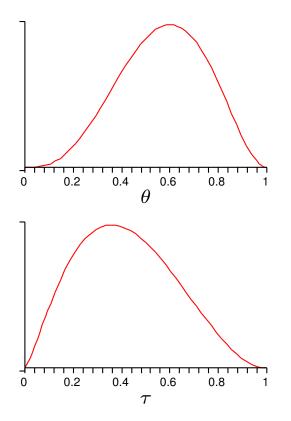
$$lik(\theta) \propto \theta^{3} (1-\theta)^{2}$$

$$L(\theta,d) = |d-\theta^{2}|$$

$$d_{ML} = 0.36, \quad d_{MPL} \approx 0.385, \quad d_{BU} \approx 0.335$$

$$\tau = \theta^{2} \quad lik(\tau) \propto \tau^{\frac{3}{2}} (1-\sqrt{\tau})^{2}$$

$$\begin{aligned} \tau &= \theta^{2}, \quad lik(\tau) \propto \tau^{2} (1 - \sqrt{\tau})^{2} \\ L(\tau, d) &= |d - \tau| \\ d_{ML} &= 0.36, \quad d_{MPL} \approx 0.385, \quad d_{BU} \approx 0.404 \end{aligned}$$



$$lik(\theta) \propto \theta^{3} (1 - \theta)^{2}$$

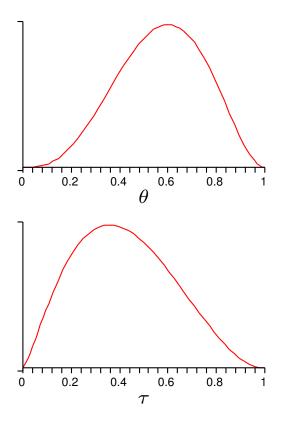
$$L(\theta, d) = |d - \theta^{2}|$$

$$d_{ML} = 0.36, \quad d_{MPL} \approx 0.385, \quad d_{BU} \approx 0.335$$

$$\tau = \theta^{2}, \quad lik(\tau) \propto \tau^{\frac{3}{2}} (1 - \sqrt{\tau})^{2}$$

$$L(\tau, d) = |d - \tau|$$

$$d_{ML} = 0.36, \quad d_{MPL} \approx 0.385, \quad d_{BU} \approx 0.404$$



$$L(\tau, d) = \begin{cases} 2 |d - \tau| & \text{if } d \leq \tau \\ |d - \tau| & \text{if } d \geq \tau \end{cases}$$

$$d_{ML} = 0.36, \quad d_{MPL} \approx 0.468, \quad d_{BU} \approx 0.502 \ (d_{BU} \approx 0.435 \text{ using } \theta)$$

Relative Plausibility

The likelihood function can be *easily updated* by multiplying it with the (conditional) likelihood functions based on the new observations. *Prior information* can be encoded in a "prior likelihood function" assumed to be based on past (independent) observations.

Relative Plausibility

The likelihood function can be *easily updated* by multiplying it with the (conditional) likelihood functions based on the new observations. *Prior information* can be encoded in a "prior likelihood function" assumed to be based on past (independent) observations.

The **relative plausibility** is the extension of the likelihood function to the subsets \mathcal{H} of Θ by means of the supremum: $rp(\mathcal{H}) \propto \sup_{\theta \in \mathcal{H}} lik(\theta)$.

Relative Plausibility

The likelihood function can be *easily updated* by multiplying it with the (conditional) likelihood functions based on the new observations. *Prior information* can be encoded in a "prior likelihood function" assumed to be based on past (independent) observations.

The **relative plausibility** is the extension of the likelihood function to the subsets \mathcal{H} of Θ by means of the supremum: $rp(\mathcal{H}) \propto \sup_{\theta \in \mathcal{H}} lik(\theta)$.

The relative plausibility is thus a quantitative description of the uncertain knowledge about the models P_{θ} , that can start with complete ignorance or with prior information, that can be easily updated when new data are observed, and that can be used for inference and decision making.

Imprecise Probabilities

The relative plausibility is a *non-calibrated possibility measure* on Θ .

Imprecise Probabilities

The relative plausibility is a *non-calibrated possibility measure* on Θ .

MPL criterion: minimize $\sup_{\theta} rp\{\theta\} L(\theta, d)$

Shilkret integral of $L(\cdot, d)$ with respect to rp

Imprecise Probabilities

The relative plausibility is a *non-calibrated possibility measure* on Θ .

MPL criterion: minimize $\sup_{\theta} rp\{\theta\} L(\theta, d)$

Shilkret integral of $L(\cdot, d)$ with respect to rp

If Γ is a set of probability measures on Θ , the consideration of the (secondorder) relative plausibility on Γ leads to a *non-calibrated possibilistic hierarchical model*, which allows non-vacuous conclusions even if Γ is the set of all probability measures on Θ .

The relative plausibility and the MPL criterion:

• are simple and intuitive.

- are simple and intuitive.
- are parametrization invariant.

- are simple and intuitive.
- are parametrization invariant.
- lead to decision functions that are equivariant (if the problem is invariant) and asymptotic optimal (if some regularity conditions are satisfied).

- are simple and intuitive.
- are parametrization invariant.
- lead to decision functions that are equivariant (if the problem is invariant) and asymptotic optimal (if some regularity conditions are satisfied).
- satisfy the strong likelihood principle.

- are simple and intuitive.
- are parametrization invariant.
- lead to decision functions that are equivariant (if the problem is invariant) and asymptotic optimal (if some regularity conditions are satisfied).
- satisfy the strong likelihood principle.
- can use pseudo likelihood functions.

- are simple and intuitive.
- are parametrization invariant.
- lead to decision functions that are equivariant (if the problem is invariant) and asymptotic optimal (if some regularity conditions are satisfied).
- satisfy the strong likelihood principle.
- can use pseudo likelihood functions.
- can represent complete (or partial) ignorance.

- are simple and intuitive.
- are parametrization invariant.
- lead to decision functions that are equivariant (if the problem is invariant) and asymptotic optimal (if some regularity conditions are satisfied).
- satisfy the strong likelihood principle.
- can use pseudo likelihood functions.
- can represent complete (or partial) ignorance.
- can handle prior information in a natural way.

Estimation of the variance components in the 3×3 random effect one-way layout, under normality assumptions and weighted squared error loss.

