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The likelihood function lik measures the relative plausibility of the models
Pθ, on the basis of the observation A alone.

The likelihood function lik is not calibrated : only ratios lik(θ1)/lik(θ2) are
well determined.

Example.
X ∼ Binomial (n, θ)
n = 5, θ ∈ Θ = [0, 1]

x = 3 ⇒ lik(θ) ∝ θ3 (1− θ)2
0.60.4 0.80.20 1

θ



Statistical Decision Problem

set of statistical models {Pθ : θ ∈ Θ}
set of possible decisions D
loss function L : Θ×D → [0,∞)
L(θ, d) is the loss we would incur, according to the model Pθ, by making
the decision d.



Statistical Decision Problem

set of statistical models {Pθ : θ ∈ Θ}
set of possible decisions D
loss function L : Θ×D → [0,∞)
L(θ, d) is the loss we would incur, according to the model Pθ, by making
the decision d.

observation A ; likelihood function lik on Θ

MPL criterion: minimize supθ lik(θ) L(θ, d)



Statistical Decision Problem

set of statistical models {Pθ : θ ∈ Θ}
set of possible decisions D
loss function L : Θ×D → [0,∞)
L(θ, d) is the loss we would incur, according to the model Pθ, by making
the decision d.

observation A ; likelihood function lik on Θ

MPL criterion: minimize supθ lik(θ) L(θ, d)

minimax criterion: minimize supθ L(θ, d)
MPL = minimax if lik is constant (i.e., complete ignorance about Θ)
MPL: Minimax Plausibility-weighted Loss
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lik(θ) ∝ θ3 (1− θ)2

L(θ, d) = |d− θ2|

dML = 0.36, dMPL ≈ 0.385, dBU ≈ 0.335
0.60.4 0.80.20 1
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τ = θ2, lik(τ) ∝ τ
3
2 (1−

√
τ)2

L(τ, d) = |d− τ |

dML = 0.36, dMPL ≈ 0.385, dBU ≈ 0.404
0.60.40.20 10.8

τ

L(τ, d) =
{

2 |d− τ | if d ≤ τ
|d− τ | if d ≥ τ

dML = 0.36, dMPL ≈ 0.468, dBU ≈ 0.502 (dBU ≈ 0.435 using θ)
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Relative Plausibility

The likelihood function can be easily updated by multiplying it with the
(conditional) likelihood functions based on the new observations.

Prior information can be encoded in a “prior likelihood function” assumed
to be based on past (independent) observations.

The relative plausibility is the extension of the likelihood function to the
subsets H of Θ by means of the supremum: rp(H) ∝ supθ∈H lik(θ).

The relative plausibility is thus a quantitative description of the uncertain
knowledge about the models Pθ, that can start with complete ignorance
or with prior information, that can be easily updated when new data are
observed, and that can be used for inference and decision making.
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Imprecise Probabilities

The relative plausibility is a non-calibrated possibility measure on Θ.

MPL criterion: minimize supθ rp{θ}L(θ, d)︸ ︷︷ ︸
Shilkret integral of L(·, d) with respect to rp

If Γ is a set of probability measures on Θ, the consideration of the (second-
order) relative plausibility on Γ leads to a non-calibrated possibilistic
hierarchical model, which allows non-vacuous conclusions even if Γ is the
set of all probability measures on Θ.
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Properties

The relative plausibility and the MPL criterion:

• are simple and intuitive.

• are parametrization invariant.

• lead to decision functions that are equivariant (if the problem is invariant)
and asymptotic optimal (if some regularity conditions are satisfied).

• satisfy the strong likelihood principle.

• can use pseudo likelihood functions.

• can represent complete (or partial) ignorance.

• can handle prior information in a natural way.



Example

Estimation of the variance components in the 3× 3 random effect one-way
layout, under normality assumptions and weighted squared error loss.

v̂e
(SSa+SSe)

v̂a
(SSa+SSe)

0.04

0.2
0

0 0.4

0.08

SSa/(SSa+SSe)
10.80.6

0.16

0.12

MPL                     

ANOVA = ANOVA+ = MINQU  

ML                      

ReML                    

-0.05

0.20

0.1

0.4
0

SSa/(SSa+SSe)

10.8

0.15

0.6

0.05

MPL                     

ANOVA                   

ML                      

ReML = ANOVA+           

nonneg. MINQ min. bias  



Example

3
E[(v̂e−ve)2]

ve2
E[(v̂a−va)2]

(va+1
3 ve)2

0.20

1

0.85

0.8

Va/(Va+Ve)

0.7

0.80.4

0.95

0.9

0.75

10.6

MPL                     

ANOVA = ANOVA+ = MINQU  

ML                      

ReML                    

1.6

0.2

1.2

0.4

0.8

0

0.4

Va/(Va+Ve)
0.80.6 1

MPL                     

ANOVA                   

ML                      

ReML = ANOVA+           

nonneg. MINQ min. bias  


