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1. The basic decision problem

• Comprehensive framework

∗ Actions ai ∈ A (treatment; investment)
∗ states of nature ϑj ∈ Θ (disease; development of

economy)
∗ utility u(ai, ϑj) =⇒ random variable u(a)

• Find optimal action(s)!

• When everything is finite: utility table
ϑ1 . . . ϑj . . . ϑm

a1 u(a1, ϑ1) . . . u(a1, ϑm)
... . . .
ai

... u(ai, ϑj)
... . . .

an u(an, ϑ1) . . . u(an, ϑm)
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2. Classical Decision criteria

• Randomized actions: λ(ai) probability to take action ai

Two classical criteria:

• Bayes optimality

∗ perfect probabilistic knowledge: prior π(·) on Θ

∗ maximize expected utility Eπu(a) → max
a

• Maximin (Wald) optimality

∗ complete ignorance =⇒ focus on the worst state:

min
j

u(a, ϑj) → max
a

What to do in the case of partial prior knowledge?
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3. Decision criteria under partial knowledge

•M convex polyhedron of classical probabilities (e.g.
structure of F-probability); E(M) set of vertices

•M = {π(·)|bl ≤ Eπfl ≤ bl} l = 1, . . . , r

• interval-valued expected utility:

EMu(a) := [EMu(a), EMu(a)]

:= [ inf
π∈M

Eπu(a), sup
π∈M

Eπu(a)]

• axiomatic justifications!

5



Some Criteria
(Survey: Troffaes (SIPTA-NL, Dec 2004))
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EMu(a) → max
a

η · EMu(a)+
Γ-Maximin
Choquet-Integral
(Berger,
Vidakovic,
Ruggeri, Gilboa,
Schmeidler,
Kofler, Menges,
Walley,
Chateauneuf,
Cohen,
Meilijson)

(1 − η)EMu(a)
→ max

a

Caution
parameter η
(Ellsberg
(1961), Jaffray,
Schubert,
Weichselberger,
Augustin) 6



4. Calculation of optimal actions

• Far from being straightforward; lack of feasible algorithms

• has hindered large scale applications

• Formulation in terms of linear programming problems
also provides theoretical insight.

• Two different situations considered here

∗ direct assessment of M (e.g. by an expert)
∗ construction of partial knowledge based on previous

observations on Θ (repeated decision problems)
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4. a) Pessimistic descision making:

Gamma-Maximin

• Bayes and minimax optimality as border cases

• Gamma-Minimax criterion (e.g., Berger (198412,
Springer), Vidakovic (2000, Insua, D.R., and Ruggeri, F.
(eds.))

• Maxmin expected utility model (Gilboa, Schmeidler
(1989, Journal of Mathematical Economics)

• MaxEMin (Kofler, Menges (1976)) (cf. also Kofler (1989,
Campus) and the references therein)

• maximinity (Walley (1991, Chapman Hall))

• In the case of two-monotonicty: Choquet expected utility
(e.g., Chateauneuf, Cohen, Meilijson (1991, Finance))
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EMu(λ) → max
λ

⇐⇒ min
π∈M

m∑

j=1

(
n∑

i=1

u(ai, ϑj)λ(ai)

)
π({ϑj}) → max

λ
(6)

subject to

n∑

i=1

λ(ai) = 1; λ(ai) ≥ 0

⇐⇒
G → max

subject to

n∑

i=1

λ(ai) = 1; λ(ai) ≥ 0

m∑

j=1

(
n∑

i=1

u(ai, ϑj)λ(ai)

)
π({ϑj}) ≥ G, ∀π ∈ M.
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⇐⇒ Augustin (2002, Stat. Pap.), Augustin (2004, ZAMM).

G → max

subject to

n∑

i=1

λ(ai) = 1; λ(ai) ≥ 0 and

m∑

j=1

(
n∑

i=1

u(ai, ϑj)λ(ai)

)
π({ϑj}) ≥ G, ∀π ∈ E(M).

• needs, however, all vertices to be determined in advance

• In case of F-probability: |E(M)| may be as large as m!
(Wallner (2005, ISIPTA))

• considerable simplification in the case of two-monotoncity
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Alternative: partial dualization

• min
π∈M

m∑

j=1

(
n∑

i=1

u(ai, ϑj)λ(ai)

)
π({ϑj}) → max

subject to λ · 1 = 1.

• Fix λ, and consider the dual problem of
m∑

j=1

(
n∑

i=1

u(ai, ϑj)λ(ai)

)
π({ϑj}) → min

π∈M
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With C = (c1, ..., cr)
T, D = (d1, ..., dr)

T :

max
c,C,D

{
c + BC − BD

}

subject to c ∈ R, C,D ∈ Rr
+, and

c + Fj (C − D) ≤
n∑

i=1

u(ai, ϑi)λ(ai), j = 1, ..., m.1

1 Here c,C,D are optimization variables such that the variable c corresponds to the constraint∑m

j=1
πj = 1 in the primal form, ci corresponds to the constraints bi ≤ Eπfi and di corresponds

to the constraints Eπfi ≤ bi.
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• By the general theory, the values at the optima coincide

min
π∈M

m∑

j=1

(
n∑

i=1

u(ai, ϑj)λ(ai)

)
π({ϑj}) = max

c,C,D

{
c + BC − BD

}
,

• Then the additional maximization over λ gives the
optimal action:

max
c,C,D,λ

{
c + BC − BD

}

subject to c ∈ R, C,D ∈ Rr
+, λ · 1 = 1 and

c + Fj (C − D) ≤
n∑

i=1

u(ai; ϑj)λ(ai), j = 1, ..., m.

• Note: single linear programming problem, the vertices are
not needed
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4 b) Caution parameter η

• More sophisticated representations of interval-valued
expected utility to avoid overpessimism

• take additionally into consideration the decision maker’s
attitude towards ambiguity, e.g.:

• Ellsberg (1961, QJE)

• Jaffray (1989, OR Letters)

• Schubert (1995, IJAR)

• Weichselberger (2001, Physika, Chapter 2.6)

• Weichselberger and Augustin (1998, Galata and
Küchenhoff (eds.))
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• Criterion:

ηEMu(λ) + (1 − η)EMu(λ) → max
λ

• Same tricks can not be applied again: unbounded
solutions

• Ensure that in the previous systems some inequalities are
equalities ⇒ several optimization problems to be solved

• Alternatively, in the approach based on the vertices,
consider for every π̃ ∈ E(M) the objective function

η · G + (1 − η)

m∑

j=1

(
n∑

i=1

u(ai, ϑj)λ(ai)

)
π̃(ϑj) → max

and maximize over all elements of E(M)
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4 c) E-admissibility (and maximality)

• E-admissibility (e.g., Levi (1974, J Phil), Schervish et al.
(2003, ISIPTA)):

• Consider all actions that are not everywhere suboptimal :

∃πa∗ ∈ M such that a∗ is Bayes with respect to πa∗:
m∑

j=1

u(a∗, ϑj)πa∗(ϑj) ≥
m∑

j=1

u(a, ϑj)πa∗(ϑj), ∀a ∈ A
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Lemma 1 (Characterization of Bayes actions in classical decision
therory) Fix π(·) and let A∗

π be the set of all pure Bayes actions with
respect to π(·), and Λ∗

π the set of all randomized Bayes actions with
respect to π(·). Then

i) A∗
π 6= ∅

ii) Λ∗
π = conv(A∗

π).2

Proof: The task of finding a Bayes action with respect to π(·) can
be written as a linear programming problem

m∑

j=1

(
n∑

i=1

u(ai, ϑj) λ(ai)

)
π(ϑj) −→ max

λ

subject to
∑n

i=1 λ(ai) = 1, and λ(ai) ≥ 0, for all i.

i) One optimal solution must be attained at a vertex.
ii) Convexity of the set of optimal solutions.

2 Here every pure action ai ∈ IA is identified with the randomized action λ(a) = 1 if a = ai

and λ(a) = 0 else, and with the corresponding (n × 1) vector.
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A general algorithm for E-admissibility

• Turn the problem around!
Now fix the actions!

• For every ai look at

Πi := {π(·) ∈ M| ai is Bayes action with respect to π(·)}

According to Lemma 1:

Πi =

{
π(·) ∈ M

∣∣∣∣
m∑

j=1

u(ai, ϑj) π(ϑj)

≥
m∑

j=1

u(al, ϑj) π(ϑj), ∀ l = 1, . . . , n

}
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•

Πi = conv


π̃(·) ∈ E(M)

∣∣∣∣∣∣

m∑

j=1

u(ai, ϑj)π̃(ϑj) ≥

m∑

j=1

u(al, ϑj)π̃(ϑj), ∀l = 1, . . . , n


 .
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• Alternatively, without using E(M):

z −→ max
(πT ,z)T

m∑

j=1

u(ai, ϑj) π(ϑj) ≥
m∑

j=1

u(al, ϑj) π(ϑj), ∀l = 1, ..., n

m∑

j=1

π(ϑj) = z , z ≤ 1 , π(ϑj) ≥ 0 , j = 1, . . . , m ,

bl ≤
∑

fl(ϑj)π(ϑj) ≤ bl , l = 1, . . . , r .

• Iff z = 1 then Πi 6= 0 and ai is E-admissible

• To determine all E-admissible pure actions: |A| linear
optimization problems have to be solved
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• By Lemma 1 ii) adaption possible to calculate all

E-admissible actions:
For all I ⊆ {1, . . . , m} check whether there is a prior
π under which all ai, i ∈ I , are simultaneously optimal,
i.e. replace (23) by

ΠI :=
{

π(·)
∣∣∣

m∑

j=1

u(ai, ϑj) π(ϑj) ≥
m∑

j=1

u(al, ϑj) π(ϑj),

∀i ∈ I, l = 1, . . . , n.
}

If ΠI is not empty, then all the elements of conv(ai|i ∈ I)
are E-admissible actions.

• If ΠI = ∅ for some I then all index sets J ⊃ I need not
be considered anymore.
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maximality

• If Πi contains π with π(·) > 0, then ai is admissible in
the classical sense and therefore maximal.

• But if A is not convex, not all maximal actions are found
in that way.

• uniform optimality of ai∗:

If Πi = M then Eπu(ai∗) ≥ Eπu(a), ∀π ∈ M, a ∈ A.

(cp. Weichselberger (2001, Chapter 2.6): structure
dominance)
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Now (second paper) data on θ1, . . . θn

• nj observations of θj, j = 1, . . . n.

• more general: set-valued observations ⊆ Θ

• calculate expected utility based on estimates π̂(θj)
resulting from the data

modeling
data

naive

regular relative frequencies
set-valued empirical belief functions,

“random sets”,
(e.g. S.Maier (2004, Univ. Munich),
Tonon et al. (2000, RESS))
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• nj observations of θj, j = 1, . . . n.

• more general: set-valued observations ⊆ Θ

• calculate expected utility based on estimates π̂(θj)
obtained from the data

modeling
data

naive

regular relative frequencies
set valued empirical belief functions,

“random sets”,
S.Maier (2004, Univ. Munich)
but amount of data is not reflected;
no difference whether 1 or 106 observations
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• nj observations of θj, j = 1, . . . n.

• more general: set-valued observations ⊆ Θ

• calculate expected utility based on estimates π̂(θj)
obtained from the data
modeling

data
naive

regular relative frequencies IDM
set valued empirical belief functions, extended empirical

“random sets”, belief functions,
S.Maier (2004, Univ. Munich) Utkin (2005, FSS)
but amount of
data is not reflected;
no difference whether
1 or 106 observations
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To calculate optimal actions

• use previous techniques or

• considerable simplications due to the use of the IDM and
belief functions: With Möbius inverse m(·)

IE u(a) =
[ m∑

A⊆Θ

m(A)·min
θ∈A

u(a, θ);

m∑

A⊆Θ

m(A)·max
θ∈A

u(a, θ)
]

Chateauneuf and Jaffray (1989, Math. Social Sc.; Cor.4),
Strat (1991, IJAR)

• Leads to a frequency-based Hodges-Lehman criterion

• Be careful when specifying Θ! The embedding principle
is not valid in decision theory based on the IDM.
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The (Imprecise) Dirichlet Model in decision

making

• N multinomial observations on space Ω, Dirichlet prior
with parameter S, t = (t1, . . . tm)

• For every A ⊆ Ω predictive probability

P (A|n, t, s) =

∑
ωj∈A nj + s ·

∑
ωj∈A tj

N + s

• Walley (1996, JRSSB): Consider all Dirichlet priors, i.e.
vary t ∈ S(1, m)

P (A|n, t, s) =
[∑

ωj∈A nj

N + s
;
s +

∑
ωj∈A nj

N + s

]
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• In decision making based on certain value of t

Etu(λ) =

∫
S(1, m)

m∑

i=1

(u(λ, ωi) · πi) p(π)dπ

=

m∑

i=1

u(λ, ωi) ·

∫
S(1, m)πi · p(π)dπ =

m∑

i=1

u(λ, ωi) · Epπi,

where Epπi =
ni + sti

N + s
, (1)

finally resulting in IEtu(λ) =

m∑

i=1

u(λ, ωi)
ni + sti

N + s
. (2)

• For the IDM

IEu(λ) :=
[
IEu(λ), IEu(λ)

]
:=
[

inf
t∈S(1,m)

IEtu(λ), sup
t∈S(1,m)

IEtu(λ)
]
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Optimal actions in the case of pessimistic

decision making

IEu(λ) −→ max
λ

• use previous approaches or:

• for randomized actions solve

G −→ max
λ

subject to G ∈ R, λ · 1 = 1, and for j = 1, ..., m,

G ≤
1

N + s

n∑

r=1

λ(ar)


s · u(ar, ϑj) +

m∑

j=1

u(ar, ϑj) · nj


 .
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• for pure actions



m∑

j=1

u(ar, ϑj) · nj + s · min
j=1,...m

u(ar, θj)


 −→ max

r

⇐⇒
N

N + s
· (MEU based on

ni

N
) +

S

N + s
· (Wald criterion)

N −→ ∞ maximum expected utility (MEU)

N = 0 Wald
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Incomplete data

• coarse data, set-valued observations
make no additional assumptions (like CAR (Heitjan and
Rubin (1991, Ann. Stat.), Blumenthal (1968, JASA)))
=⇒ extended empirical belief functions (Utkin (2005,
FSS))

• ci observations of Ai ⊆ Ω, i = 1, . . . M such that∑M
i=1 ci = N ; c := (c1, . . . , cM)

• leads to several IDM’s with observations
n(k) = (n

(k)
1 . . . , n

(k)
m ), k = 1, . . . , K.

(cp. also de Cooman and Zaffalon (2004, AI), Zaffalon
(2002, JSPI))
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• for fixed t

P (A|c, s) =
mink

∑
ωj∈A n

(k)
j + s ·

∑
ωj∈A tj

N + s

P (A|c, s) =
maxk

∑
ωj∈A n

(k)
j + s ·

∑
ωj∈A tj

N + s

• vary t ∈ S(1, m)

P (A|c, s) =

∑
i:Ai⊆A ci

N + s
, P (A|c, s) =

∑
i:Ai∩A6=∅ ci + s

N + s
.
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Relation to empirical belief functions/random

sets

• Empirical belief functions: set m(Ai) = ci

N
.

• Naive approach does not reflect the sample size,

• leads to Belemp(·) and Plemp(·)

• Extended empirical belief functions can be written as

P (A|c, s) =
N · Belemp(A)

N + s
, P (A|c, s) =

N · Plemp(A) + s

N + s
with Möbius inverse

m∗(Ai) =
ci

N + s
; m∗(A∞) =

s

N + s
.
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Optimal randomized actions (with Ji := {j|ωj ∈ Ai})

1

N + s

(
s · V0 +

M∑

k=1

ck · Vk

)
→ max

λ
,

subject to V0, Vi ∈ R, λ · 1 = 1.

Vi ≤
n∑

r=1

u(ar, ωj) · λ(ar), i = 1, . . . M, j ∈ Ji

V0 ≤
n∑

r=1

u(ar, ωj) · λ(ar), i = 1, . . . m.

Optimal pure actions

1

N + s

(
s · min

j
u(ar, ωj) +

M∑

k=1

ck · min
ωj∈Ak

u(ar, ωj)

)
−→ max

r=1,...n
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Concluding remarks

• Other optimality criteria

• Alternative approach:

incorporate sampling information by considering decision
functions (not equivalent under IP (cp. Augustin (2003,
ISIPTA), Halpern and Grünwald (2004, UAI), Jaffray
(1999, ISIPTA), Seidenfeld (2004, Synthese)))

• Alternative models to learn from multinomial data:

inference within the frame of Weichselberger’s (e.g. 2005,
ISIPTA) theory of symmetric probability or circular–
A(n)–based inference: (Coolen and Augustin (2005,
ISIPTA)).
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