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Let P be a set of statistical models:

• P is a set of probability measures on a measurable

space (Ω,A);
• absolutely no structure is imposed on P (for instance,

P could be a nonparametric family of models).

The likelihood function likA : P → [0, 1] based on the

observation A ∈ A:

• is defined by likA(P ) = P (A);
• measures the relative plausibility of the models P ∈ P,

on the basis of the observation A alone;

• is not calibrated: only ratios likA(P )/likA(P ′) are well

determined in a statistical sense.



Relative Plausibility

The relative plausibility rp on P generated by likA:

• is the class of nonnegative functions on 2P defined by

rp(H) ∝ supP∈H likA(P );
• is a non-calibrated possibility measure on P.

The description of the uncertain knowledge about
the models by means of relative plausibility:

• can be easily updated (since likA∩B = likA likB|A);

• allows a natural incorporation of prior information:

independent pieces of information can be combined,

and complete (or partial) ignorance can be described;

• is parametrization invariant;

• satisfies the strong likelihood principle; but can also

use pseudo likelihood functions;

• can be used for inference (maximum likelihood

estimator, tests and confidence regions based on the

likelihood ratio statistic, . . . ) and decision making

(MPL criterion);

• leads to conclusions which are in general weaker

than those based on a probabilistic description of the

uncertain knowledge about the models; but is based

on weaker assumptions, is simpler and more intuitive.



MPL Criterion

A statistical decision problem is described by a loss

function L : P ×D → [0,∞):
• D is the set of possible decisions, and P is the set of

considered statistical models;

• L(P, d) is the loss we would incur, according to the

model P , by making the decision d.

If the uncertain knowledge about the models is described

by the relative plausibility rp on P, the MPL criterion
for choosing a decision d ∈ D consists in minimizing

supP∈P rp{P}L(P, d):
• the minimized quantity is the Shilkret integral of L(·, d)

with respect to rp: this is intuitive and simple (allowing

decisions even in difficult problems);

• if invariance with respect to translations of the loss

function is needed, the integral of Choquet should be

used instead of the one of Shilkret;

• the obtained decision functions are equivariant (if the

problem is invariant) and asymptotic optimal (if some

regularity conditions are satisfied);

• the consideration of many examples suggests that the

MPL criterion leads in general to reasonable decisions.



Example

Estimation of the variance components in the 3 × 3
random effect one-way layout, under normality

assumptions and weighted squared error loss.

Xij = µ + αi + εij ∀ i, j ∈ {1, 2, 3}

Normality assumptions:

αi ∼ N (0, va), εij ∼ N (0, ve), all independent

⇒ Xij ∼ N (µ, va +ve) dependent, µ ∈ R, va, ve ∈ R+

The estimates v̂e and v̂a of the variance components ve

and va are functions of

SSe =
3∑
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3∑
j=1

(xij − x̄i·)2 and SSa = 3
3∑

i=1
(x̄i·− x̄··)2 ,
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1
3
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1
9
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xij ,

SSe

ve
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3 ve
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The considered loss functions are

3
(v̂e − ve)2

ve
2 and

(v̂a − va)2

(va + 1
3 ve)2 .
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