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1. Outline

• Aim: ∗ predictive inference
∗ based on n multinomial data (no ordering, e.g. colours)
∗ without prior knowledge
∗ categories defined upon observations

◦ cj observed category j
◦ DNi described new category i
◦ UN undescribed new category

• The IDM (Walley (1996, JRSSB)) is the widely used
standard model

• Here: A nonparametric alternative based on A(n)©
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More detailed: Available data:

• nj observations in category cj, j = 1, . . . , k,
∑k

j=1 nj =
n categories defined upon observation:
nj ≥ 1, and 1 ≤ k ≤ n
(adding category with 0 observations to data does not
affect our inferences)

• Defined New categories: DNi, for i = 1, . . . , l, with
l ≥ 0 - explicitly specified categories (not yet observed) -
if only one, also denoted as DN

• Unobserved New category: UN - any observation not in
a previously observed category, includes categories DNi

3



2. The Imprecise Dirichlet model (IDM(M)) I

• Essentially a robust Bayesian model: Given a multinomial
likelihood, consider all Dirichlet priors (conjugate prior)

• vacuous prior probabilities

• predictive probability to see colour ci in the next trial

P (Yn+1 = ci|previous data) =

[

ni

n + s
,
ni + s

n + s

]

• IDMM (Walley & Bernard (1999, tech. rep.)) gives the
same one-step predictive probabilities

• alternative view (Seidenfeld & Wasserman (1996, Disc.
Walley)): ǫ-contaminated relative frequencies
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The IDM(M) II

• Many powerful applications

• Survey: Bernard (2005, IJAR)
At ISIPTA ´05 papers by: Abellan & Moral, Piatti &
Zaffalon & Trojani, Silva & Campello de Souza, Strobl,
Utkin & Augustin

• Walley’s fundamental principle: RIP
(representation invariance principle)

‘Posterior upper and lower probabilities assigned to an
observable event A should not depend on the sample
space in which A and the previous observations are
represented’
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The IDM(M) III

• Thesis: The successful behaviour of the IDM is a result
of the use of interval-valued instead of precise probability
– and not of the specific model.

• Indeed, the IDM(M) has some strange and counter-
intuitive features, raised by the discussants of Walley’s
(1996) paper, and even by Walley himself.
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3. Predictive inference based on A(n)© – basic ideas

• First step: assume the colours to be ordered on the real
line (e.g. wave length, sympathy index)

• observations (no ties):1 x(1) < x(2) < . . . < x(n)

. . .
ultraviolet

380

. . .

430 490 570 600 640 780 nm

violet blue green yellow orange red

infra-red

x(1) x(2) x(3) x(4)

•

A(n): for all l = 0, . . . , n; post - data exchangeability:

P (Yn+1 ∈ (x(l), x(l+1))|previous data) =
1

n + 1

• Augustin & Coolen (2004), JSPI: totally monotone
probability; many nice other properties

1x(0) := −∞ x(n+1) := ∞



• Not of direct use for multinomial data: no ordering of the
colours!

• Second step: consider a circle instead of the real line

◦ probability wheel with coloured segments
◦ ⇒ A(n)©
◦ “configuration”σ
◦ similar properties of Pσ(·) = [P σ(·), P σ(·)]: total

monotonicity of P σ(·), F-probability with structure
Mσ

• The ordering is arbitrary ⇒ consider all possible
orderings and take the envelope over all configurations
σ ∈ Σ :

P (·) = [P (·), P (·)] P (·) = min
σ∈Σ

P σ(·) P (·) = max
σ∈Σ

P σ(·)

• P (·) is F-probability, P (·) is coherent.
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The predictive probabilities of the general events

• Lower probability: minimum probability, for event of
interest involving next observation, implied by this
representation of data and A(n)©

• Upper probability: similarly, the maximum probability
that can be assigned to the event of interest, consistent
with this representation of data and A(n)©

Note: without the ‘one category - one segment’
assumption, our method would lead to vacuous lower and
upper probabilities (i.e. 0 and 1, respectively)
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4. Basic features in comparison with the IDM

• Asymptotics n −→ ∞: For any fixed sample space
imprecision vanishes and the true proportions are learned
correctly, too.

• Detailed examples −→ poster

• Our inferences may depend on the data representation.
Walley´s RIP is replaced by two priniciples:

1. Inferences based on different data representations must
not be conflicting.

2. Parsimonity: Finer representations lead, ceteris paribus,
to more imprecision.
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1. Inferences based on different data representations must
not be conflicting.

◦ For two representations R1, R2

P (Yn+1 ∈ A| data by R1) ∩ P (Yn+1 ∈ A| data by R2) 6= ∅ ,

for all A describable by R1 and R2

◦ Note: in the case of classical probability this is
equivalent to the RIP.
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2. Parsimonity: Finer representations lead, ceteris
paribus, to more imprecision.

◦ Let A1, A2 be the σ-fields produced by R1 and R2. If
A1 ⊇ A2 then

P (A| data based on R1) ⊇ P (A| data based on R2) , ∀A ∈ A2

◦ A more detailed data representation allows more
detailed inferences, but since this will imply less
information on one or more categories, this may lead
to more imprecision (certainly not less imprecision) for
events expressable by all representations considered.
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• Seeing first outcome (f.o.) again:

◦ IDM: P (Y2 = f.o. | f.o. ) = 1
1+s (1

2, s = 1, 1
3, s = 2)

◦ Here P (Y2 = f.o. | f.o. ) = 0

◦ our lower probability for this event is 0 - our lower
probability for the next observation to belong to a
category only becomes positive if that category has
been observed at least twice.
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• Described and undescribed new categories

◦ P (Yn+1 = DN) =
[

0; 1
n

]

but

P (Yn+1 = UN) =
[

0; kn

]

◦ Extreme cases:
∗ If all n observations belong to the same category,

then P (Yn+1 = UN) =
[

0; 1
n

]

,

∗ whereas if all n observations belong to different
categories, we have P (Yn+1 = UN) = [0; 1] .

◦ The lower and upper probabilities according to the
IDM are [0, s

n+s] for both these events, independent
of other aspects of the data apart from n (RIP!).
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Examples

Example 1: (Walley)
n = 3 observations: 1 Yellow, 1 Blue, 1 White. Interest in
‘4th observation is Red or Yellow’

Consider 4 data representations:

(a) Da = (RY : 1; O : 2);
(b) Db = (Y : 1; O : 2);
(c) Dc = (RY : 1; B : 1; W : 1);
(d) Dd = (Y : 1; B : 1; W : 1).

RY denotes the category ‘Red or Yellow’, and O the
category ‘Other observed’, that is here not ‘Red or Yellow’.
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Depending on the data representation, so on the definition
of the observation categories, the event of interest is either
denoted as Y4 = RY or as Y4 ∈ {R, Y }.

(a)P (Y4 = RY |Da) = [0, 2/3];
(b)P (Y4 ∈ {R, Y }|Db) = [0, 2/3];
(c)P (Y4 = RY |Dc) = [0, 2/3];
(d)P (Y4 ∈ {R, Y }|Dd) = [0, 1].

Add 4th observation: Red

Now interested in Y5 (using our model and A(4)© )

(e) De = (R : 1; Y : 1; B : 1; W : 1);
(f) Df = (RY : 2; O : 2);
(g) Dg = (R : 1; Y : 1; O : 2);
(h) Dh = (RY : 2; B : 1; W : 1).
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These lead to the lower and upper probabilities:

(e)P (Y5 ∈ {R, Y }|De) = [0, 1];
(f)P (Y5 = RY |Df) = [1/4, 3/4];
(g)P (Y5 ∈ {R, Y }|Dg) = [0, 3/4];
(h)P (Y5 = RY |Dh) = [1/4, 3/4].

Consider a fifth observation, in new category Green:

Di = (R : 1; Y : 1; B : 1; W : 1; G : 1)

leads to P (Y6 ∈ {R, Y }|Di) = [0, 4/5]

(compare to (e)) so with all observations in different
categories, such upper probabilities are less than one if more
than half of all observations belong to categories not in the
event of interest.
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Example 2: (Walley)
n = 6 observations: 1 Red, 3 Blue, 2 Green

Event of interest: 7th observation is Red

We consider this, but also include the possibility that 7th
observation belongs to a new category, and variations to
data

D1 = (R : 1; B : 3; G : 2) leads to
P (Y7 = R|D1) = [0, 2/6]
and
P (Y7 ∈ {R, UN}|D1) = [0, 3/6]
P (Y7 ∈ {R, DN}|D1) = [0, 3/6]

Suppose that one observation was mistakenly classified as
Blue, it should have been classified as Purple
D2 = (R : 1; B : 2; G : 2; P : 1) leads to
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P (Y7 = R|D2) = [0, 2/6]
and
P (Y7 ∈ {R, UN}|D2) = P (Y7 ∈ {R, DN}|D2) = 0
which are the same as for D1. However,
P (Y7 ∈ {R, UN}|D2) = 4/6
and
P (Y7 ∈ {R, DN}|D2) = 3/6
while for l ≥ 2 we have
P (Y7 ∈ {R} ∪

⋃l
i=1 DNi|D2) = 4/6

What if 2 Blue were distinguished: 1 Light Blue, 1 Dark
Blue; and same for 2 Green:

D3 = (R : 1; LB : 1; DB : 1; LG : 1; DG : 1; P : 1) leads
to

P (Y7 = R|D3) = [0, 2/6]
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and

P (Y7 ∈ {R, UN}|D3) = P (Y7 ∈ {R, DN}|D3) = 0

are the same as for D1 and D2.

The upper probabilities for these latter two events are now

P (Y7 ∈ {R, UN}|D3) = 1 and P (Y7 ∈ {R, DN}|D3) = 3
6

while

P (Y7 ∈ {R} ∪
⋃l

i=1 DNi|D3) = (2 + l)/6 for l = 2, 3

and

P (Y7 ∈ {R} ∪
⋃l

i=1 DNi|D3) = 1 for l ≥ 4.

These upper probabilities correspond logically, by P (A) =
1 − P (Ā), to the lower probabilities of the complementary
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events, which is particularly clear for the event Y7 ∈
{R, UN}|D3, for which the complementary event has

P (Y7 ∈ {LB, DB, LG, DG, P}|D3) = 0

caused by the fact that none of these categories has been
observed more than once. With this data representation, we
also have the important difference between

P (Y7 = UN |D3) = [0, 1] and P (Y7 = DN |D3) = [0, 1/6]

The upper probability for Y7 = DN is 1/6 for any data
representation, but the upper probability for Y7 = UN
depends on the specific data representation, and is less than
1 for data representations with two or more observations
belonging to the same category, and it also becomes 1/6 in
case all six observations are represented by a single category.
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5. More detailed technical results and their

practical use

• P (·) is two-monotone (but not totally monotone)

• The structure

M =
{

p(·)
∣

∣ P (·) ≤ p(·) ≤ P (·)
}

of P (·) equals

M = conv

(

⋃

σ∈Σ

Mσ

)
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• This means: All the information is exploited when
working with P (·).
Apply two-monotonicity =⇒ easy calculation of

◦ intuitive conditional probabilities

◦ lower and upper expectation / prevision by Choquet
integration: For every X : Ω → IR

IEMX =
∑

A⊆Ω

m(A) min
ω∈A

X(ω)

and

IEMX =
∑

A⊆Ω

m(A) max
ω∈A

X(ω)

=⇒ direct application in decision making and
classification.
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